The Design of Garter Springs

Report No. 128

by

Dipl.Ing. S.C. Gross, VDI, A.M.I.Mech.E.

November 1961

SPRING HADUFACTURERS' RESEARCH ASSOCIATION

A 15 P. A. B. B. D. B. F. P. C. MINESPATRICHAN DISTRICT STRUCTURE AND ADDRESS STRUCTURE STRUCTURE STRUCTURE STRUCTURE STRUCTURE STRUCTURE

Report No. 128

The Design of Garter Springs

ALL RIGHTS RECEIVED

.

The information contained in this report is confidential and must not be published, circulated or referred to outside the Association without prior permission.

(November 1961)

Report No. 128

THE DESIGN OF GARTER SPRINGS

by Dipl. Ing. S.C. Gross, VDI, A.M.I.Mech.E.

A garter spring is a helical spring the ends of which are joined in such a way that the free spring is a ring with outside diameter D_{ro} , mean diameter D_r , and inside diameter D_{ri} (Fig. 1). It may operate in extension or compression.

1. The garter spring in extension

If the spring is fitted over a shaft with diameter $D_s > D_{ri}$, D_{ri} is increased to D_s by $\Delta D = D_s - D_{ri}$ and D_r by the same amount to $D_r + \Delta D$ so that the mean circumference of the ring is lengthened by $\Delta \pi D$. The spring load due to this extension is given by

$$P_1 = \pi \Delta DS$$

where S denotes the spring rate. If the spring is wound with initial tension, the corresponding load P_0 has to be added to P_1 so that

$$P = P_{o} + P_{1} = P_{o} + \pi \Delta DS.$$
 (1)

The extended spring is exerting a uniform radial pressure on the shaft.

If a cylinder with diameter D_r is subject to an internal pressure p_r in pounds per unit of length of its circumference it can be shown that the resultant load of the radial pressure p_r acting on half the cylinder is the same as if p_r acted on its diameter. This resultant load $p_r \times D_r$ produces a tangential load P in the cylinder so that (see Fig. 2)

$$2P = p_r D_r$$
or $p_r = \frac{2P}{D_r} lb/in.$
(2)

If the circular axis of the garter spring with diameter $D_r + \Delta D$ is considered as a cylinder, the spring load P produces the radial pressure p_r on this cylinder. This pressure is given by (2) after replacing D_r by $D_r + \Delta D$. By substituting P from (1), equation (2) becomes

$$P_{r} = \frac{2P_{o}}{D_{r} + \Delta D} + \frac{2\pi \Delta DS}{D_{r} + \Delta D}$$
(3)

As the circumference πD_s of the shaft is smaller than the mean circumference $\pi(D_r + \Delta D)$ of the garter spring, the pressure p exerted on the shaft is larger than p_r . Obviously, the magnitudes of pressure are inversely proportional to the corresponding magnitude of circumference. Then,

$$\frac{\mathbf{p}}{\mathbf{p}_{\mathbf{r}}} = \frac{\pi(\mathbf{D}_{\mathbf{r}} + \Delta \mathbf{D})}{\pi \mathbf{D}_{\mathbf{s}}}$$
or
$$\mathbf{p} = \frac{\mathbf{D}_{\mathbf{r}} + \Delta \mathbf{D}}{\mathbf{D}_{\mathbf{s}} - \mathbf{p}_{\mathbf{r}}}$$

Consequently, pressure p is obtained by multiplying (3) by $(D_r + \Delta D)/D_s$. The result is

$$p = 2 \left[\frac{P_{0}}{D_{s}} + \frac{\pi \Delta D}{D_{s}} s \right]$$

or, as $\Delta D = D_{s} - D_{ri}$,
$$p = 2 \left[\frac{P_{0}}{D_{s}} + \pi \left(1 - \frac{D_{ri}}{D_{s}} \right) s \right].$$
 (4)

2. The garter spring in compression

If a garter spring is fitted into a tube with inside diameter $D_t < D_{ro}$, the mean diameter of the spring is reduced by $\Delta D = D_{ro} - D_t$. As the spring is stressed in compression, there is no initial load P_o . In this case, the radial pressure exerted on the inside of the tube is given by

$$p = 2\pi \left(\frac{D_{ro}}{D_t} - 1 \right) S.$$
 (5)

The Stress in Garter Springs

If a helical spring with mean diameter D, wire diameter d, spring index c = D/d, curvature correction factor K = (c + 0.2)/(c-1)and number of working coils n undergoes a change of length δ , the corresponding corrected stress is given by

$$q_{c1} = \frac{GK_{\hat{D}}}{n\pi cD}$$

In the case of the garter spring, where $\delta = \pi \Delta D$, this equation becomes

$$q_{c1} = \Delta D = \frac{GR}{D} \cdot \frac{GR}{nc}$$

With the ends joined, the originally straight axis of the spring is a circle, and the spring is subject to a bending moment

$$H = \frac{EI_{1}}{R}$$
$$= \frac{EI_{2}}{D_{r} + \Delta D}$$
(6)

where the + or - sign pertains to the spring in tension or compression, respectively. The bending stiffness of a helical spring with length L and spring rate S is given by

$$\Xi I = \frac{1}{2} \frac{L D^2 S}{1 + 2G/E}$$

or, as in this case $L = \pi(D, AD)$, by

$$\Xi = \frac{\pi}{2} \frac{\binom{D}{r} \pm \Delta D}{1 + 2C/E} D^2 s.$$

Substituting this turn and $S = dG/8nc^3$ in (6) gives

$$M = \frac{\pi D^2}{1+2G/E} \quad \frac{\partial G}{\partial nc^2}$$

This moment produces the torsional shear stress

$$q_{c2} = \frac{16 \text{ K} \text{ K}}{\pi a^{3}}$$
$$= \frac{16 \text{ K}}{\pi a^{3}} \cdot \frac{\pi D^{2}}{1+2C/E} \cdot \frac{dG}{8nc^{3}}$$
$$= \frac{2}{1+2G/E} \cdot \frac{GK}{nc}$$

which is independent of the mean diameter $D_r \pm D$ of the garter spring in position as long as contact between the coils does not take place. (Fig. 1). For conventional spring steels with $G = 11.5 \times 10^6$ lb/sq.in. and $E = 30 \times 10^6$ lb/sq.in., the term 2/(1+2G/E) equals 1.13.

The total shear stress q_c is the sum of q_{c1} and q_{c2} , i.e. $q_c = \begin{bmatrix} \Delta D \\ D \end{bmatrix} + \begin{bmatrix} 2 \\ 1+2G/2 \end{bmatrix} \begin{bmatrix} GX \\ Hc \end{bmatrix}$ (7)

where $\Delta D = D_s - D_r$ or $D_r - D_t$ according to whether the spring is stressed in tension or compression, respectively.

If, in the first case, the spring is coiled with initial tension the stress

$$a_{ci} = \frac{8cP_{ci}}{\pi c^2}$$

has to be added to q.

