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SPRING DESIGN SERIES

Introduction

The majority of springs used in industry are parallel sided
compression tension and torsion spring types and this series
is intended to be a guide for engineers and spring users to
the specification and design of the most widely applied springs.

The information given is basic and the design formulae should
be well within the scope of anyone with a working knowledge of
algebra and an appreciation of the mechanical properties of
the materials from which springs are made.

PART 1 COMPRESSION SPRINGS

Compression springs represent around 80% of all springs
produced by spring making companies. Where there is a choice
of the Lype of spring to be fitted in a component or mechanism
usually the compression spring is preferred in that the stress
concentration occurring at the ends of tension springs could
result in loss in performance. Also wherever possible the
spring should be designed in round wire rather than rectangular
Or square sections as the former is much cheaper, has a better
surface and is easier to obtain.

Design Considerations

Fig. 1 shcws the four common end forms used on compression

springs.

SQUARED OR CLOSED ENDS SQUARED AND GROUND ENDS
NOT GROUND—COILEDRIGHT HAND COILED LEFT HAND
Total Coils = Active Coils + 2 Total Coils == Active Coils +2
|
} PLAIN ENDS— GROUND
PLAIN ENDS—COILED RIGHT HAND COILED LEFT HAND

Total Coils = Active Coils (N)

Total Coils = Active Coils +I

Types of Ends

The number of active (working) coils is influenced by the end
formation. The relationship between total coils (N) and active
coils (n) is shown in the table below. In addition the solid
length of a compression spring (i.e. the length of the spring
when all coils touch each other) is dependant upon the end
type. This is also tabulated below.



Type of End Number of Solid Length
active coils {Ls)
(n)

Closed and ground N - (N=%) x d
Closed N - 2 (N+1) x 4
Open N (N+1) x 4
Open and ground N -1 N x d

d = wire diameter; N = no. of total coils

Spring Index (c¢)

mean coil diameter (D)

The ratio, wire diameter (d) is known as the spring index (c).

For circular section wires c should be not less than 3% and
not more than 12 if the springmaker is to maintain accuracy
during coiling.

Spring Rate (s)

This is the chanyge in load per unit deflection, and is measured
in lbs/in or Newtons/mm (e.g. if a spring has a rate of 40 lb/in
then the load will increase by 40 lbs for every inch through
which the spring is deflected&). The rate of any spring may be
determined by:- a) Deflect the spring to approx 20% of available
deflection and measure the load (Pl) and spring length (L1),

(b) Deflect the spring to not more than 80% of total available
deflection and measure locad (P2) and spring length (L2), (c¢)
Catulate Rate (S) from:-

S = (P2 - Pl) 1lb/in or (N/mm)
L1 - L2

In spring design the standard formula for rate is:-

- 4
S =864 here G = Rigidity Modulus
8np3 d = wire diameter
n = active coils
D = mean diameter

Rigidity Modulus (G)

The amount of elastic deflection in a spring depends on two
constants called moduli of elasticity which have distinct values
for every spring material. The rigidity or shear modulus (G)

is used for compression and tension spring calculations because
such springs are stressed in torsional shear.

Values for G expressed in kN/mm? and 1lb/in2 for a range of
spring materials are given in the table below:-



- Mcduius Values for Spring Material

G G

(kN/mm?2) (1bf/ind)
Hard drawn carbon steel 73.3 1.5 x 106
Carbor steel fcr hardening ang
tempering 79.3 11.5 x 105
Silicon manganese steel . 79.3 11.5 x 105
Chromium varadium steel 79.3 11.5 x 108
Martensitic stainless steel 7%.3 11,5 x 109
Ausfenitic stainiess steel €5.5=75.8 9.5 - 11.0 x 1i¢®
Phosphor Bronze 43.C 6.25 x 106
Kard drawn brass wire 36.0 5.25 x 10°
Copper beryliiem 41.3 6.0 x 106
Monel ' 65.5 9.5 x 10%
Tnconel X750 76.0 11.0 x 10°
Nimonic 90 82.7 12.0 x 165
Titanium alloys 34.5-41.4 5-6 x 10°

Design Stresses

is deflected the wire ig twisted
€ s are produced which are higher on
the inside of the coils. In calculations this higher stress
on the inside is taken intoc account by multiplying the gtandard

formula for stress by a correction factor (K} which increases
Yy

as the curvature of the wire increases i.e. lower spring index.
The basic stress formula corrected for curvature ig:-

Stress (T} = §2b

ﬁd3

where P = axial Icad
B = mean ceil diameter
a = wire diameter



Maximyr Stresses

Having obtained the stress calculated frcm the formala the desigmer needs
to know whether it is within the limiting stress values of the materiaj +o
be used. Fig. 2 gives the maximm desigr stresses which are recomended
for commercial springs made from a nurber of readily available spring
materials. In general, compression springs should be designed so that the
stress at solid is withip the limitgs ghown on the curves. A further
restraint iz that the spring should be operated so that nc more than 85%
of the total available deflection is used. This emsures that the spring

NOTE The design stresses ir Fig. 2 are for springs which have been
prestressed by being compressed to solid a muber of times {usually 2) o
remove initial set and stabilige the free height of the spring. They are
alsc intended for springs which are statically Iocaded i.e. heid in one
position Ehroushout: their working iife. Springs which & not undergo more
than 10,000 {10’} reversals of lced &during their working life may alsc
be designed to the same Ex:..m stress levels. Where the loading cycle is
repeated more than 107 times the effects cof fatique have to be
considered and the maximm permigsible stresses will be reduced {See
information in SRAMA Material Selector}.

A fuwther limitation of Fig, 2 is that no account has been taken of
relaxation. A compression spring will lose Yoad when stressed tc high
stress levels for extended periods of time. This effect is more
pEonoimeced at high terperatures but can be significant at  room
temperatures for certair materials. If load loss due to relaxation could
affect the spring performance then the reximae stress may need i be
limited to lower values than those detailed in Fig 2. ({See SRAMA Material
Selector for such informaticn).

Design Examie

A corpression spring has the folliowing specification:-
Outside diametar {Do) = 25 rm

Free length {I. } = 80 mm

o)
Load (P} = 267 N at 44 mm compressed height (i.e. 36 mm deflectior frow
free height})
The maximm alloweble solid length to allow 15% residual deflecticn is

therefore 3¢ = 42.4 m pax.
Ends closed and ground.
f =N

Determine wire diameter {3} Stress {S}), nmuber of active coils etc.

1. Assume a triai wire diameter of arcund }/8 of 0.D. say 3.00 nm.



MAX. CORRECTED TORSIONAL STRESS (N/mm2)
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Fig.2 Relative maximum permissible static operating stresses for spring materials which have been stress

relieved and prestressed.



2. Calculate spring index (c¢) and stress correction factor (k)

C=D -d = 25-3 = 8
g 3
c-1 8-T1

3. Calculate operating stress fram formila:-—

‘T =8D K = 8x 267 x 22 x 1.7

a3 , x 33
= 648 N/mm
Therefore from the design stresses (Fig. 2) it is possible that cold drawn

carbon steel wire would be suitable. However, the solid stress needs to
be calculated before this material can be accepted.,

4. Calculate rate as follows:-—

S = 267 = 7.42 N/m
36
5. Calculate number of active coils:

fram n = cd® = 79300 x 3%

EISD3 8 x 7.42 x 223

= 10.16 say 10.1/4 ooils
Therefore Total coils:(N) = (n + 2) = 12.1/4 coils
and solid length (LS)'K-"-.: (N-1/2) xd

11.75 x 3
35.25 mm

This is less than the calculated maximum solid height of 42.4 mm (max)
which is acceptable.

6. Solid load (P ) = (L_ - L) xS
= 080 -%35.25) x 7.42
= 332N
Solid stress (2;) =8PD K
T3
=8 x332 x22 x1.17
ile 33
=806 N[mm?®

This is slightly higher than the design stress indicated in Fig. 2 for
grade 1 patented cold drawn wire to BS 5216 but grades 2 or 3 would be



acceptable.

Alternatively, if a design in grade 1 were required then the procedure
fram step 2 needs to be repeated with the next largest wire size (say

3.15)

cC

e

L

S

25 - 3.15 = 6.94
3.15

6.94 + 0.2 = 1.20
6.94 - 1

8 x 267 x 21.85 x 1.20 = 570 N/m’
T X 3.15

79300 x 3.15%
8 x 7.42 x 21.85

12.6 (say 12.1/2)

will

(14.5 - 1/2) x 3.15 = 44.1m

This is larger than the maximum of 42.4 mm allowed. Hence, a design using
this larger wire size of 3.15 mm is not possible unless the outside
diameter could be increased (say to 26 mm) Calculations could then be
repeated fram step 2.

C

ts

I

26 - 3.15 = 7.25
3.15

7.25 + 0.2 = 1,19
7.25 -1

79300 x 3.15% = 11.02 (say 11)

8 x 7.42 x 24.855

(13 = 1/2) x 3.15 = 39.4 (acceptable)
(80 - 39.4) x 7.42 = 301 N

=8 x 301 x 22.85 x 1.19 = 667 N/mm2

7w x 3.15

This stress is well within the allowable for BS 5216 grade 1 material as
shown on Fig. 2.



Part 2 Extension Springs

Helical extension springs differ from camwpression springs only in the
method of load application and accordingly in the formation of the spring
ends. The application of a tensile load requires either hooks or loops
which are part of the spring (fig 1, 2.) itself, or separate camponent
parts with swivel eyes of threaded bolts which are held loosely in curved
ends or screwed into ends (fig 3). The latter screwed in inserts do
however allow the number of active turns to be varied and hence allow the
spring rate to be accurately set.

The major problem with most hook designs is that they incorporate stress
raising bends and hence extension springs tend to exhibit poorer fatigue
performance than the equivalent camwpression springs.

LENGTH OVER COILS
WIRE DIA. d.

Wil

(a.) HALF HOOK OVER CENTRE

Gl

(b.) HALF LOOP OVER CENTRE

Li
LENGTH INSIDE HOOKS MEAN DIA.

:

(c.) FULL HOOK AT SIDE

O

(d.) DOUBLE TWISTED FULL HOOK OVER CENTRE

=] -

(a.) CONED END WITH LONG SWIVEL EYE

|

G

(e.) LONG ROUNDED END HOOK OVER CENTRE

Fig. 2.

{b.) SCREWED IN PLUG WITH THREADED BOLT

(c.) SCREWED IN FLAT HOOK
Fig. 3.



Load-Deflection Characteristic

The load-deflection characteristic of an extension spring differs from
that of a compression spring due to the effect of initial tension. The
effect of initial tension is to hold the coils in contact and thus to
produce any deflection in the spring the applied force must be greater
than the initial tension (fig 4).

Pl

INITIAL Pi
TENSION

\

L2

O

EOROR

Qu‘— i i

Fig 4



By inspection it can be seen that if P,=0 then the load-deflection
characteristic is similar to that of a cx:rpréssion spring.

Design details for Initial Tension

The amount of initial tension that can be coiled into a spring is not
limitless. It is constrained by the strength of the wire used, the spring
index and the manufacturing process. The graph in fig 5 depicts the
maximum commercially available initial tension. Very high or very low
initial tension (i.e. outside the preferred range) will cause coiling
tolerances to increase due to the difficulties of setting up coiling
machines at these extreme limits. Heat treatment and/or prestressing
operations after coiling will effectively remove some or all of the
initial tension.

Maximum Allowable Working Stresses in Extension Springs

The maximum stress that a spring can withstand without taking a permanent
set is dependent on the elastic limit of the material. For example with a
patented wire to BS 1408R3 the elastic limit will be in the order of 35%
of the UTS in the unheat treated condition and 47% of the UTS after a heat
treatment of 250°C for 30 minutes. Often a balance will have to be
achieved between heat treatment and hence increase in elastic limit and
loss in initial tension. Thus generally speaking extension springs can be
stressed to the same levels as unprestressed compression springs. It
should be remembered that extension springs do not have a physical stop to
inhibit over-stressing and thus a minimum residual working range ofl5% is
important.

If the hook design is such that the bending stress is approximately

greater than twice that of the torsional body stress then plastic set can
occur in the loops and must be catered for.

Fatigue Properties

Extension springs do not operate as well in fatigue applications as their
compression spring counterparts. This is often due to loop designs
incorporating stress raisers in the form of tight bends or tooling marks.
In comparison the extension spring is same 20% poorer in fatigue than a
similarly stressed campression spring. It should also be noted that
extension springs cannot be shot peened or prestressed easily and hence
need to be lowly stressed in fatigue applications.
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FIG 5 MAXTMUM INITIAL TENSION v. SPRING INDEX
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Design Formulae for Extension Springs

Because the normal extension spring is in principle the same as a
campression spring the design fornulae are the same.

Notation Used

= Mean coil diameter

= Wire diameter

= Spring index D/d

= No active coils

= Body length

= Free length inside hooks
= Spring load

Initial tension load

= Shear modulus

= Extension

= Spring rate

= Torsional stress due to P

= Torsional stress due to Pi

=L 9 n o v Y B B8 a0 o o
o
n

= Sopwith correction factor ¢ + 0.2
c -1
Torsional stress due to P: g = 8DPK

Tr(33

Free length: (N + 1)d + 2 (hook length)
= (N + 1)d + 2 (D-d) for normal spring loops

Formulae for Calculating Stress in End Loops

The end loops on a spring are subject to both bending and torsional
stress. Experience has shown that failure will usually occur due to the
bending stress.

- fe—p
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Notation Used

q, = Bending stress due to P
DL = Mean coil diameter of loop
d = Wire diameter
cp = Index of loop = DL/d
KL = Curvature correction
2

- 4cL S 1

4cL(cL - 1)

Bending stress = bending component + tensile component

a = 16PD K . 4P
3 2

7d

L. |

La

1. Design Requirements

Material: Patented carbon steel to BS 1408

Max outside diameter = 0.625 in

Load (Pl) = 5 1bf

Length (Lll = 3.65 in

Load (P2) = 17.5 1bf

Length (L2) = 4.95 in

Initial Tension = 3.95 1bf

English loop

2. Observations

Spring rate = "2 ~ Py = 17.5 =5 = 9.615 1b/in
L, - L 4.95 - 3.65

The maximum possible load assuming 15% residual range

equals P, x 115%

2
17.5 x 1.15 =

29.1 1bf
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The required free length
° S 9.615

3. Calculations
i) Make certain estimations for the following details:-

Estimate a mean coil diameter (D) = 0.5
Estimate a stress correction factor (K) = 1.2
Estimate a maximum stress (gm) = 100 000 lbf/in2
ii) Calculate wire diameter

3 8PmDK 8 x20.1 x 0.5 x 1.2

d = = = .000307
g m x 100 000

d = .067" or, 0.072" (15 swg) rounding up to the nearest standard wire
size.

iii) Check that a maximum stress of 100,000 = 250,000 lb/in2 is possible
with 0.072 dia. wire.

Required tensile = 100,000 = 250,000 1b/in? or 111 ton/in2
0.4

Using BS 1408 we find that Range 2 has a tensile of 110/120 ton/in? for
the calculated wire size.

iv)  Calculate the active number of coils to give the required spring
rate: 4 6

Active coils, n = _Gd = 11.5 x 10

BSD3

x 0.072%
8 x 9.615 x 0.5°

= 32.1

v) Calculate the free length.Lb =(np+1)d + 2 (D-4)

(32.1 + 1) 0.072 + 2 (0.5 - 0.072)

I

3.240 in

vi) Compare the free length with that required.

If the calculated free length is larger than required then increase the
coil diameter or reduce the wire diameter. This will shorten the spring
but increase the stress.

If the calculated free length is shorter than that required reduce the
coil diameter or increase the wire diameter.
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Alternatively the hooks can be extended.

vii) Go back and change D (and d if required) and recalculate N and L,
until the required free length is achieved.

d 0.072 d .072 d .072
D 0.490 D 0.480 D 0.481
n 34.15 n 36.32 n 36.1
L 3.36 L 3.5 L03.489
viii) Calculate the new index c = 0.481 = 6.68
0.072

ix) Calculate the new stress correction factor

K=6.68 + 0.2 = 1.21

6-68 - l
x) Calculate the Maximum stress Ay = 8PmDK
1Td3
q, 8 x 20.1 x 0.48; x 1.21 _ 79800 lb/in2
T x 0.072
This relates to a wire tensile of 79800 = 89 ton/ing

0.4 x 2240

Thus BS 1408 Rl will be strong enough. Should the stress exceed the
allowable wire strength then a stronger material will have to be selected
or the spring redesigned incorporating a larger wire and/or a small coil
diameter.

Final Details

d = 0.072"

D = 0.481"

N = 36.1"

L = 3.489"

o)

Material:- BS 1408 B Range21
Stress at 17.5 1b = 69.500 lb-/:m2
Stress at 5 1b = 19,850 lb/én

Initial Tension Stress = 13900 1b/in
Initial Tension as % of wire strength 6.2%.
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Part 3 Torsion Springs

Torsion springs differ from both campression and extension springs by the
method of operation and calculation. This type of spring may take many
forms where the shape of the end is usually determined by the shape of the
part to which the spring is to be attached. Some simple examples of end

v . ~ e

formations are shown below:

(a) STRAIGHT TORSION (b) DOUBLE TORSION
(c) LOOP  ENDS (d) SHORT HOOK ENDS.

@

() STRAIGHT OFFSET (f) HINGE ENDS.
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For ease of manufacturing one should always aim for the simplest form of
leg, ie tangential to the body of the spring.

Torsion springs are loaded by a torque acting about their axis. The
directicn of cperation should alwvays have the effect of winding the spring
up, as greater torgues can be achieved before overstressing the spring.

Changes in Spring Dimensions

During operaticn torsicn springs will change dimensions, sometimes quite
significantiy. For exampie, in a spring operating in the wird up
direction the following changes will occur.

) Nuber of Ccils in the Spring Increases

=

For onme oomplete turn {3600) of ore leg the number of coils in the
spring increases by one.

ii} Spring Length Increases

For one corplete turn of one leg the spring length increases by onhe wire

iii} The Mean Coil Diameter of the Spring Decreases

The percentpge reduction in mean coll diameter is the same as the
percentage increase in the number of coils. This reduction in diameter
can be significart if there are only a few coils. For exarpie:

Free position:

Number of coils irn spring = 4
Inside diameter of spring = 25 mm

Wound up position:
One leg is deflected through "“/2 tirn (180 deqg}
Nuvber of coils in spring = 4.5

Percentage increase in coils = 4.5 - 4 x 100 = 12.5%
4

This will aiso be the percentage decrease in diameter.
Reduction in diameter = 25 x 12.5 = 3.125 m

NN

L

Therefore inside diameter of spring = 21.875 mm
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This is a very important fact about torsion springs and must be borne in
mind when designing a spring which has to work on a rod of specified
diameter. Consequently adequate clearance should always be left between
the springs and the mandrel so that the spring does not bind on the
mandrel when it is wound up.

Spring Requirements

In general, torsion springs are close-coiled, and any initial tension
between the coils should be removed as it can affect the torsional

characteristics.

Due to the nature of operation of a torsion spring there are normally two .
methods of specifying the angular position of the legs after a torque has
been applied.

a) Required torque developed after rotation of © degrees.

This method specifies a torque/angle but does not specify the angular
relationship of the legs.
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b) Required torque developed at a specified angle.

This method specifies the position of the legs in relationship to one
another after a torque has been applied. Hence, if the spring rate is
known, the free position of the legs can be determined.
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Design Procedure

A logical procedure to obtain the optimum spring design is given in the
following section. Let us consider first the notation and formulae;

Notation

L1, L2 = Length of legs (mm, or in)

Wire diameter (mm, or in)

Radial width of rectangular section (mm, or in)

Axial thickness of rectanqular section (mm, or in)

Mean coil diameter (mm, or in)

Angle of rotation (deg)

Applied torque (Nmm, or 1bf.in)

Number of coils 3 3 3

Section modulus = _1d~ for round wire (mm”, or in~)
32

Hunmwnnn

il

NZAQ0UDS U

3)

@2 for rectangular wire (rrm3, or in
6

Bending stress {N/nmz, or lbf/inz)
Rotational spring rate (Nmm/deg or 1bf in/deg)
Youngs modulus

o
S
E

Values of Youngs modulus for a range of spring materials are given in the
table below:

Modulus Values for Spring Material

E 2 E 2

(kN/mm”) (1bf/in™)
Hard drawn carbon steel 200 30 x 102
Carbon steel for hardening and tempering 200 30 x 106
Silicon manganese steel 200 30 x 106
Chromium vanadium steel 200 30 x 106
Martensitic stainless steel 200 30 x 10 6
Austenitic stainless steel 180-190 26.5-286)( 10
Phosphor bronze 100 15 x 106
Hard drawn brass wire 100 15 x 10 6
Copper beryllium 130 18.5 x %0
Monel o 180 26 x 10
Inconel X750 210 31 x 106
Nimonic 90 235 34 x 10°

Titanium alloys 110-130 16-19 x 10°
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Design Stress

The bending stress (o) is related to the applied torque (T) by the
following:—

[8) -

N3

Hence, for round wire material:-

6 =32xT7T
‘.ITd3

It should be noted from the above formula that, unlike compression and
extension springs, there is no mean coil diameter term. This means that
stress is independent of mean ocoil diameter and thereby simplifies the
design procedure for torsion springs.

Deflection Under Torque

The angular rotation (deflection) under a given applied torque is given
by:—

e = 11520 x T [(LlXL2)+(NX1TxD)]
Ex'nzde| 3

By re-arranging the above formula it is possible to give a relationship
for the rotational spring rate as follows:—

S = E x d% x =2
11520 x[(Ll + L2)+ (N x 7 x D)]
3

Maximum Allowable Stresses

Compression springs are stressed in torsion but torsion springs are
stressed in bending. Consequently, operating stresses for torsion springs
can be much higher than those for compression springs. The maximum
allowable stress that a spring can withstand before taking a permanent set
is dependent upon the properties of the material. For example, a torsion
spring manufactured from a patented wire to BS 1408 can achieve stresses
in the order of 70% of the tensile strength of the material without any
heat treatment (60% for ENS8A and 70% for oil hardened and tempered wire
to BS 2803). With conventional low temperature heat treatment the stress
levels can be raised quite significantly to 110% for BS 1408 (100% for
ENS%A) and 140% for oil hardened and tempered wire when stress relieved at
2507C.

Table for maximum allowable stress in torsion springs ( o max) as a
percentage of the UTS.
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'As (oiled' After LTHT

Cold drawn carbon steel _' 70% UTS 110% UTS
Cold drawn stainless steel 60% UTS 100% UTS
Oil hardened and tempered steel 70% UTS 140% UTS

Although higher stresses can be achieved by heat treatment, this operation
will affect the position of the legs. The springs will either wind up (BS
1408, BS 2803) or unwind (EN58A) dependent upon the material from which
they were manufactured.

Unlike compression springs, torsion springs have no physical stop which
prevents overstressing and so they should always be designed with a
residual range of 15%.

ie Maximum design stress = maximum allowable stress x 0.85. Hence the
maximum operating torque (T max) is given by:-
3

T = d.o x 0.85
max max

32
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Design Example

Torsion Spring Requiremnents

Maximum Outside Diameter =11 mm

Minimum Inside Diameter = 7.5 mm o
Maximum Torque = 126 Nmm at a leg angle of 270
Maximm Length = 11 mm

Length ILeg 1 = 7 m

Length leg 2 = 8 nmm

Torsional Rate = 0.7 Nmm/Deg

Load

Load

1. Observations

Deflection from free at max torque:

$ = Torque
Rate

= 126 = 180 deg

0.7
Angular relationship of legs in free position
,B=e-¢=2?0—180=90deg=1/4 turn

Total coils in free position = Integer + 1/ 4
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2. Determine Wire Diameter

Estimate a wire size, say 1.0 mm

Maximum allowable stress = 32xT

Jx d x0.85

= 32 x 126

Jex 12 x 0.85

= 1510 N/mm’
Consequently we need a material with a tensile strength of

1510 N/mm?
0.7

BS 5216 Grade 4 will be suitable. If the stress was too high then we
would have to revise our estimate to a larger wire size.

3. Estimate Number of Coils in Free Position

We have already determined that total coils in free position = Integer +
/4,

S0 let us assume total coils of 81/ 4,

This gives a spring length of

(8.25 + 1) x d = 9.25 mm in free position

(8.25 + 0.5 + 1) x d = 9.75 mm in wound position

The latter value is the critical one as it must be less than the specified
value of 11 mm.

In this example the value is OK: if this had not been the case then the
total number of coils would have needed reducing.

4. Calculate Spring Diameter

Rate (R) = E x dF xx?
11520 xEL+ L2 + N xXx D
3
D= _ExRxd - Ll+12
1520 x N x R 3 N#
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= 2 x 105 XRX 14 - 7+ 8

11520 x 8.25 x 0.7 3x8.25 xnw
= 9.44 - 0019
= 9,25 mm

9.25 + 1.00 =10.25mm

9.25 -~ 1.00 = 8.25mm

1-0.5 |x9.255 - 1 = 7.69m
8.25

Outside diameter free position
Inside diameter free position
Inside diameter wound position

These details fit within the specifications. However, if the spring
diameter had been too small, one or both of the following options could
have been selected:

i)  Increase wire diameter and repeat from section 2.
ii) Reduce number of coils and repeat from section 4.

If, on the other hand, the spring diameter had been too large, the
following options would have been possible:

i)  Reduce wire diameter and repeat from section 2.
ii) Increase number of coils and repeat from section 3.

5. Final Details

Material BS 5216 M4
Wire Diameter 1.0 mm
Mean Coil Diameter 9.25 mm
Total Goils 8.25 2

Stress at 126 Nmm torque 1283 N/mm
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Part 4 Nested Springs

A Introduction

Nested springs are normally employed when a single spring cannot be
designed to satisfy the load at length requirements due to restrictive
space limitations. Nested springs make better use of the space available
than a single spring, thus yielding a higher volumetric efficiency which
can result in one or more of the following advantages:

i) The stress is reduced
ii) The outside diameter is decreased
iii) The length is reduced

The effect of using section material gives the same advantages as those
described above except the improvement in volumetric efficiency will be
less marked. ‘

B Design Considerations

1) The overall requirements must be split to each of the springs in the
pest. For a nest of two springs the total applied load should be
split in the ratio 2:1.

For example;
Required load 2100 N.

Load to be supported by the outer spring _ 2 X 2100 = 1400 N

2+ 1
Load to be supported by the inner spring _1 x 2100 = 700 N
2+1
For a nest of three springs the load should be split in the ratio
4:2:1.
For example;

Required load 2100 N

Load to be supported by outer spring

I
>
»
~
3
I

1200 N

I
%]
"
N
=
3
il

Load to be supported by middle spring 600 N



Load to be supported by imner spring = i x 210C = 300w

4 +2-+1
2} '™me sclid length of the cuter spring srm..dbe':ade,?reaterﬂaan the
solid length of vhe inner spring, b_{ approximately /2 a wire
ai ter,
3} Adjacent spr_ngs_rﬂ'a"ests...dldnewou:ﬁtcﬂleemes1_ehandso
that they do not entangle.
4) Sufficient clearance shou'd be allowed between adiacent springs to

minimige any possible interference. The outside diameter of the
adiacent imner spr..ng can be calculated from the imnmer diameter cf the
outer spring using the following formulas

in =Y x

\UO"‘ \ .-_l? . . )

{D; ); = O e diameter of inner spring

{B;}jﬂ = Inside diameter of outer spring

X =C.eararcerac:cr.a.-cerfm"tab.ebelaw

— T H

i Inside Diameter | Clearance Factor!}

icf Quter Spring | X i

| { 3m) | i
\ wnr J i x

| i i

: i i

i «81 i C.92z ‘

i 2.1 g 0.54

! 3.1 ! 0.55

: 4.1 i 0.9

! 5,21 ; 0.96

i 6,23 | 0.96

! 7.25 ! 0.97

T i .

5) The inner spring should be checked for buckling - if this ig stable,
then the outer spring will also be stable.

C Design Procedure

Using the required load characteristics determined in step 1) for the
outer spring, follow the standard procedure for the design of carpression
springs

Having designed the outer spring, use the table in step 4) to calculate
the ocutside diameter of the irmer spring. Using the locad requirement
calculated in step 1) for the immer spring, again follow the standard
design procedure. Corpare the solid length of this spring with the outer
and make any adiustments tO wire diameter and spring diameter as are
recessary to obtain the correct solid length. After any change o

diameter check clearance between springs. Once an accepiable 595*“"-
has been established for the outer spring pair, the procedure
is repeated for any further springs in the nest
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Part 5 Rectangular Section Compression Springs

Rectangular section springs are normally employed when a single spring
cannot be designed to satisfy the load at length requirements.

Design Considerations

In general, the use of section material can enable springs of a lower
stress to be designed. This is because more material can be fitted into
the available space.

Under certain conditions, notably for large relative deflections, a change
fram round to rectangular section material will enable a spring design to
become stable as regards buckling.

Shaped wire is not as good in fatigue as round wire because in general
shaped wire has an inferior surface finish, and the reduction in stress
which can be achieved does not ocampensate for the reduced fatigue
properties.

Rectangular or square section material does not came in standard wire
sizes. It is usually made to order and is therefore difficult to obtain,
especially in small quantities.

When springs are coiled, the section of the wire changes shape. This does
not matter when the wire is round, but can significantly affect the solid
length when the wire is rectangular. The amwunt of 'upsetting' is easy to
estimate by the following equation.

| . e —
h Ih
1 = - -

Where h1 =h (1 + k)
n! = height after coiling
h = original thickness
¢ = Spring Index = D/b
k = 0.3 for cold drawn or prehardened and tempered materials

0.4 for annealed or hot coiled materials



Y. -

It is often necessary under these circumstances to use ‘Bevel section' or
'keystone' material, which has been shaped in the opposite direction to
allow for the upsetting.

Design Equations

The design equations are similar but more camplicated than those for round
section material, including factors which vary according to the shape of
the spring.

|
h
1
L b |
Do
|
Rate = § = A b2 h2 G
nD3
Stress = T = A p
bh
Where b = Radial width of section
h = Axial height of section
m = b/h = shape ratio

P = Axial load

D =I%)— b = Mean coil diameter
n = Number of active coils

G = Modulus of rigidty

M and A are functions of ¢ and m which can be obtained from the following
graphs.
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Design Procedure

The design procedure is similar to that for round wire campression springs
as described in parg 1 « except for the following pointg,

ii) Stress and rate formula replaced by those above;
ii) Ir order o Getermine ailowable stresses the section size needs to
be reiated to a standard wire size, this is done by the following
formila: ‘

equivaient wire diameter = [4{h x b)
N &

iv) Section ratio can be adiusted tc alter solid length of spring.
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Design of Conical Springs

(a) Introduction

Conical springs are infrequently used due mainly to the difficulties of
design and problems of manufacture. However there are two characteristics
of conical springs that can be used to great advantage. These
characteristics can be incorporated in a design individually or in
combination and are as follows:-

i) Non linear rate.

Since the coil diameter varies in a conical spring the flexibility of each
coil is different; the coils with larger diameters being more flexible
than the smaller diameter coils. Consequently the larger coils deflect
further under the action of a campressive force, and if the vertical pitch
is constant, the larger coils will make contact with each other before the
smaller coils.

Up to the point at which the largest coil first makes contact, the spring
rate is linear. Fram this transition point, however, the rate increases
as more large diameter coils become inactive by making contact with the
adjacent coil.

ii) Reduced solid lengths.

By designing a spring with one end larger than the other it is possible to
make coils seat slightly inside each other, thus reducing the solid height
of the spring. In fact, if the diametral space is available, it is
possible to design a spring with the solid height equal to the wire
diameter.

Due to these factors accurate calculation for a spring's characteristics
are involved and extremely tedious by hand. Hence many methods of
approximation aimed at simplifying the calculations are available, these
varying in degrees of inaccuracy. It is not proposed here to list these
methods but to show the procedure using accurate equations. The
widespread use of camputers today enables simple use of these equations.

(b) Design Considerations

Nomenclature D; I

A

© O
O O
O O
& ©
S

—

Do



D = Mean coil diameter of any coil
Do = Mean coil diameter of largest coil
pDi= " " " " smallest coil
N = Number of active coils
P = Applied load
d = Wire diameter
c = Spring index (D/d)
k = Correction factor ct 0.2
-1
G = Modulus of Rigidity
S = Spring rate
r = radius of element
L = free height of active coils
Sgrgﬁlknm

The rate of a conical spring can easily be calculated for the linear
portion of the load deflection characteristic.

Loap —»

LINEAR
RANGE

DEFLECTION —»

)
1
]
[}
i
1

The formula for linear rate is

s=ad® |
n(Do + Di)

Stress

The stress in the spring varies through the spring and is calculated as
follows:~

q =88 K
xd
This is the general formula and D is the mean coil diameter of the coil in

which the stress is being determined. Consequently the correction factor
must be based upon the index of that coil.
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The maximum stress in the spring will always occur in the largest active
coil. Hence, during the linear portion of the rate line, maximum stress
will occur in coil Do. However, as the spring is compressed and coils
start contacting, the maximum stress will occur in the largest remaining
active ooil. The last remaining active coil before the spring goes
totally solid is the smallest diameter coil. Hence the solid stress of a
spring is:

gs = 8PsDi K

'Kd3

where K = Di§d + 0.2

Di/d - 1
If this stress exceeds the elastic limit of the material then part of the
spring will be prestressed. The amount of prestress will vary through the
spring. The geometry of the spring will be significantly affected by this
feature. If the spring is coiled with constant vertical pitch then, after
prestressing, the pitch will be reduced by varying amounts through the
spring. If a constant vertical pitch is required after prestressing, the
spring must be coiled with an increasing pitch towards the small diameter
end.

Deflection

This is calculated by considering each coil in the spring to be divided
into a nunber of segments (e). The more segments the more accurate the
result but the nore tedious the calculation.

Deflection of one element in a spring = 649Dr3

Gd4e

The relationship for calculating the radius of the nth element is as
follows:

r =Di + n (Do-Di)
2 2N x e

Thus,
%e=64P Di + n (Do-Di) 3

Gd4e Z 2Ne

However, this equation does not take account of elements.making coil-to-
coil contact. Consequently a limiting factor has to be placed upon the
calculated deflection to prevent it exceeding that which is physically
possible for the spring design.
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The maximum possible deflection for each element can be calculated from
the following equation.

S  =r1a [ov-1)2d? - Do—Di)2

Ne
Or, if the spring has been designed to lie completely flat at solid:

® max 1L

If the calculated deflection Oe exceeds the maximum possible for that
element smax then the value § is taken. The total deflection of
the spring under an applied load 1% obtained by sumning all the individual
deflections for each element.

(c) Design Procedure

i) Estimate large and small diameters based upon dimensions of
required end fitments

ii) Use minimum spring diameter and estimated solid load to determine
solid stress and estimate of wire diameter. Compare stresses with
those allowable in the same way as for parallel sided compression
springs.

iii) With the required rate for the linear portion calculate the number
of coils.

iv)  Produce load deflection characteristics of spring by using
specified load and calculate deflection of each element in turn.
When the calculated deflection of an element is greater than the
maximum allowed, that element has gone solid and so the maximum
allowed deflection only should be considered. Repeat this for all
specified loads.

V) Maximum stress in spring at any time will always occur at largest
active segment. This will always be the one giving the largest
deflection without exceeding the limiting factor.

vi) If load deflection characteristics do not match the required then
then re estimate dimensions of spring and start again at i)

vii) Check solid stress of spring against that allowable.
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Conical Springs Characteristics

As stated, conical springs do exhibit a non linear portion of the load
deflection curve when, upon deflection, the coils close and hence the
nutber of active coils decreases. The point at which this occurs is
called the transition point.

However, another practical application for conical springs, which does not
require a non linear load length characteristic, is the simple expedient
of reducing the solid length of the spring. This is achieved if the
spring is designed so that the coils fit in one another without touching
as the spring is deflected. This ensures that the working range of the
spring is within the linear portion of the load deflection curve; and the
design formulae became very easy to use since the design is exactly the
same as for a parallel sided spring, except that the mean coil diameter
used in rate calculations is an average of the mean coil diameters at
cither end of the spring, and the mean coil diameter used in stress
calculations is the largest mean coil diameter.

Ensuring that the transition deflection is greater than the deflection to
the minimum working height is best achieved during manufacture when
setting the coiling machine. Visual inspection of coiled samples under
load test will reveal whether or not all the coils are still active (i.e.
the spring is in the linear portion) at the minimum working height. If
this is not the case, small alterations can be made to the pitch tool
control at this stage, in order to extend the linear range.

A further point which requires clarification is that the formulae
presented in the first part for the limiting value of the maximum
deflection of each element hold true only for springs with a constant
vertical pitch. This is the general form of an unprestressed spring
coiled on a single point coiling machine with a push-type pitch tool. To
obtain a constant vertical pitch on a two point coiling machine with a
wedge type pitch tool is extremely difficult. The general form produced
by such a machine is of increasing pitch at increased coil diameters.
This effect tends to increase the linear portion of the load/deflection
curve which is an advantage if a linear rate is required. If a specific
non-linear rate is required, it should be borne in mind that this can be
achieved using a parallel sided compression spring with variable pitch as
an alternative to a conical spring.
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Conical Spring Design Example

To design a constant vertical pitch conical spring to suit the following

requirements.

i) Both ends to fit over a 19mm dia. rod

ii) One end to fit inside a 25mm dia. recess

iii) One end to fit inside a 65mm dia. recess

iv) Solid height to be less than S5mm

v) The rate must be linear between the following load/lengths:-

(a) At a spring height of 47.5mm load to be

.92 N

(b) At a spring height of 36.0mm load to be 5.18 N

vi) Load at 15mm height must be less than 22 N

1. Calculate the linear rate and free length as follows:-

(a) Linear rate = 5.18 - .92 = .37 N/mm
47.5 - 36

i

(b) Free length of spring = 47.5 + .92
.37

2. Assume the following:—
i) Wire diameter = 2.24mm

ii) Mean coil diameter large end = 59.75mm
iii) Mean coil diameter small end = 21.75mm

50 mm

(Do)
(Di)

NOTE:- In the design of conical springs the determination of the wire
diameter is an iterative process which involves a choice of the diameter
(usually based on experience) and working through the design procedure in
order to determine the solid stress. If this stress is too high, a new
estimate of the wire size is necessary and the procedure repeated. For
the sake of brevity, the size chosen in this example is known to be

satisfactory.

3. Using the wire size, calculate the required number of coils to deliver
the specified spring rate in the linear rate zone as follows:-

s = ga* 5
N (DO + Di)
Therefore
N = ca? = 79300 x 2.244%

s(Dg + Dj)°> .37 x (59.75 + 21.75)°
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Therefore N = 10 active coils
Therefore Total coils (Nt) =12

4. The limiting factor an deflection of each element in a constant pitch
spring must now be calculated.

First detemine if the coils of the spring will seat inside each
other thus producing a solid height of the spring equal to the wire
diameter.

space available = Qutside Dia. large end - Inside Dia. small end

= 61.99 - 19,51

= 42.48 mm

This available space would only accommodate 9 coils of 2.24 mm diameter
wire so the spring will not lie campletely flat. For ease of design and
manufacture it would be desirable for the spring to lie flat when fully
compressed. This may be achieved by re-selection of mean coil diameters.
However, in this particular case, the restriction on the available space
(ie recess diameter of large end and the rod diameter for the small end of
the spring) does not allow this option. Alternatively, the selection of a
smaller wire size with the same spring diameters may produce a design that
will lie flat.

In order to demonstrate the formula for both conditions of conical spring
the example first deals with the situation where the spring will not lie
flat (assumptions as under para 2) and later the situation where the
spring will lie flat.

The limiting factor for each element of the conical spring which does not
lie flat is calculated as follows:—

2
=L - 4d - - 1)2 g2 _ (Eo - Dj_
Gmax L d "/ (N 1)< d 2 )
Ne

L =L, - d, for a closed and ground spring
Assume e = 4 (i.e. 4 elements per coil)

2
5 = 47.76 - 2.24 —/ 92 x 2.242 -(59'75 - 21'75)
max N 2

10 x 4
= 0.97mm

5. Next, the solid stress in the spring is calculated from the solid
load.



-38-

The solid load in the spring will be that required to close the last
active element. The last active element will be the element with the
smallest coil diameter since this will be the least flexible element
(i.e. the 1st element in the summation). The deflection of this
element ( ) is therefore set equal to the limiting value calculated
in step 4 (i.e. 0.97 mm)

— — - D. 3
(61) . = -97 = 64P | Dy + n (Do - D3)

cale 2 2 Ne

For the first element n = 1. Hence, by rearranging the above formula,

Py = .97 x 79300 x 2.24% x 4 = 83N
64 x |21.75 + 1 x (59.75 - 21.75) |3
2 7 x 10 X 4

The spring index of the last active element (i.e. first element in
summation) is given by:-

Cy = 21.75
2.24

I
o
~J

The solid stress of the spring can now be determined since this is the
stress in the last active element calculated as follows:-

Ts = 8PgDjK

ra3
Therefore g = 8 x 83 x 21.75 9.7 + .2\
mox 2.243 9.7 - 1 )

£y

Therefore tg = 465N/mm2

For unprestressed springs BS 5216 Grade 1 will be acceptable.

If the stress had been too high then it would have been necessary to
perform one or both of the following:~

i) Select a larger wire size and return to step 2.

ii) Increase the linear range of the spring by increasing the
diameter of the small end or by reducing the diameter of the
large end.
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6. A check must now be made toc ensure that the seocond load length at
36.00m is within the linear range of the lcad/deflectior curve. The
rosition at which the load length characteristic becomes non—.;.near
is known as the transition point and occurs when any one of the
e.enerts irgt makes ocil-to-coil contact with a m_:..af'sbourmg element,

r order to determine the tramsition poirnt, set the
de"..ect..onof’fhe largest ocii diameter element equal to it
maximm value and calculate the load, since the largest coil digmeter
e.r.eaert is the most flexible and will therefore make contact €irgt,

Therefore r ' -
S40 = 0.97 = 642 D, +n By -Dy) |3
Gi%e | 2 2Ne i

For the largest diameter element {the 40th element) n = 40, the transition
ioad {(P,.) can be caiculated by re-arranging the alkcve form:la as

Therefore P, = 0.97 x 79300 x 2.24%4 x 4

T TBETZIT5 ¥ 40 x (59.75 -

Py = 4,.54N i 2 X

By cmparis:m _?.1'::, the specified 1::ad at 36=m--, it can be seen that the

.) B0 the design is

a.-:cep‘:ab_e on th.s peint, hweve._, if :.he txansitloh lcad had been less

than the required load, ome or more of the foliowing would have been
necessary:—

L%

W
fue
1 (@ lhby

i) Seled-.asnallarwired;aretera:ﬂremrr.nstepz.
ii) Increase mean -u_ane—erofsmalleﬂazﬂfeturp.ostenz.
iii) Increase mean coil diameter of large end and return & step 2.

7. The next step is to calculate the solid height of the spr.ng. For a
conical spnng with ciosed and ground ends that does not lie flat
this is given by:—~

{D, - D
Lc=\/{Nth)2- e mat

=y 2
_/ 3 Sarv2 _ [59.75 - 21.75\
=v (12 x 2.24)° - { > )

= 319_0Omm

[l
$]

o
9]
i

is greater than the specified value sc one or more of the following
be performed:-

¥
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i) Reduce the wire size and return to step 2
ii) 1Increase the outside diameter of the large end coil and return to
step 2.

8. The wire diameter is reduced to 2.12m and the mean coil diameter of
the larger end is increased to 61.5mm in order to reduce the solid
length. Hence the new design is as follows:-

Wire diameter 2.12mm
Mean coil diameter large end 61.5mm
Mean coil diameter small end 21.75mm

9. Based upon these new values, the following details are calculated as
" before fraom steps 3 to 7.

i) Active coils = 7.5
ii) Total coils = 9.5
iii) In the diametral space available it is possible to fit 9.5 coils,
so this spring will lie flat. The limiting deflection is
given by the following formula:-

Gmasz-d = 47.88 - 2.12 = 1.525 mm
Ne 7.5 x 4

iv) solid load = 99.4N
solid length = 2,12 (wiEe diameter) O.K.
v) solid stress = 656 N/mm

o

Hence BS 5216 Grade 1 will be acceptable for an unprestressed spring.
vi) Transition load = 5.25N.
This is acceptable since it exceeds the second load required.

vii) Solid length = 2.12mm (this is the wire diameter for a spring
lying flat).

10. The final requirement of the specification, that the load at 15mm
working height is less than 22N, is checked by calculating the
spring height under a 22N load.

This is obtained by summing the deflections of each element under a
22N load. The deflection for each element is given by the formula,

= - 3
‘Se = 64P %i—"' n (Dm2N Dil
Gd4e €
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For each element the calculated deflection from the above formula is
compared with the limiting factor. If the calculated value exceeds the
limiting value, the latter is used in the summation for total deflection,
For elements 16-20 the results of these calculations are shown below.

Element Calculated | Deflection used 1;
No . Deflection (mm) . in summation (mm) ;
16 i 1.981 ! 1.525 %
17 1.798 F 1.515
18 1.626 | 1.525
19 I 1.466 1.466
20 j 1.317 1.317

In this example the calculated deflections per elements 1-18 exceed the
limiting factor of 1.525mm, so the total deflection under 22N load can be
expressed as:-

deflection @ 22N

37.32

50 - 37.32
12.68mm

Hence the spring height under locad 22N

So the load at 15mm height will be less than 22N.

Variable Pitch Conical Springs

The example covered the design of a constant vertical pitch spring. The
design procedure for variable pitch springs is similar (providing the
pitch varies linearly), except for the following points:-

i) The limiting deflection for each element will now be different. The
value is calculated as in a constant pitch spring and then multiplied
by the following factor:-

n x Py - Pi_) + hi
Ne

Po + Py
Can

where n is the element being considered

Po is the pitch of the largest diameter coil.
Pi is the pitch of the smallest diameter coil.
N is the number of active coils
e is the number of elements/coil

(18 x 1.525) + 679 + 839 + 637 + ..... . + 83¢
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Due to the variable pitch in the spring the largest diameter coil
may no longer be the first to make coil-to-coil contact.
Consequently the first and last coils to close must be determined
by calculation.

For each element, the load at which the element deflection

equals its associated limiting deflection is calculated. The element
with the lowest load is then the first to close and the transition
point has been determined (the load being the transition load).

The element with the largest load to closure is the last to close
and the coil diameter of this final element is used in the
calculation for solid stress.
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Spring Washers

There are many designs and shapes of spring washers in use but the most
common are curved washers and wave washers. These washers are usually
used in thrust loading applications where small deflections are required
and where radial space is limited. Due to the simplified nature of the
formulae used for predicting loads in washers and to the presence of
significant frictional forces, the load tolerances should never be less
than +/- 20%.

Curved Washers

These are well suited to light thrust loads, giving a spring rate which is
near to linear. Allowance should be made for the expansion of the
diameter as the washer becomes compressed, and generally the deflection
should be limited to 80% of the height of the washer.

The simplified formulae given below are only approximations but are
sufficiently accurate for most design purposes:

——_:::::é——'L
%/ﬂfp::::hQQ s H
K

The formulae for calculating the load (P) and the bending stress (f) are:-—

— 3 -
Ioad (P) = 4Est (DD Di)
D o
o

Stress (f) = l.SPDo

5 _
t (Do - Di)
where E = Modulus of elasticity
&= Deflection

t = Material thickness
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Wave Washers

These are suitable for light to medium loads and again the spring rate in
the range 20% to 80% of the available deflection is close to being linear.
Like curved washers, the load tolerance cannot be held tighter than +/-
20% and, on loading, the washer increases in diameter although less so
than with curved washers. The form of a wave washer is shown in the
sketch below for a washer having three full waves.

Y 1

O N

To evaluate the load (P) and bending stress (f) the following equations
should be used:-

Load (P) = Esbt3N4 . [ Dy
2.4p3 D;

Stress (f) = 34PD

4bt2N2
Where E = Modulus of elasticity
6 = Deflection
t = Material thickness
N = Number of camplete waves
D = Mean diameter = D_ + D.
—o—i—
2
b =

Radial width of material = D_ - D,
——
2
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Disc Springs

Disc springs or, as they are sametimes called, "Belleville Washers"
consist of a coned disc with a central hole, as illustrated below. More
often than not the material thickness is oonstant across the annular
section.

Disc springs are particularly useful where high loads need to be
accommodated with little deflection of the spring element. Other features
and advantages of disc springs include a wide range of non-linear load-
deflection characteristics depending on the choice of cone height to
material thickness, diameter, flexibility in changing the load-deflection
behaviour by stacking the discs in series or in parallel and self damping
due to friction, particularly when arranged in parallel.

From a design aspect, one of the most important considerations is the
load-deflection behaviour, which is dependent on the dimensions of the
inside and outside diameters, material thickness and the free cone height
of the disc spring. .In general the ratio of the outside to inside
diameter varies fram about 1.5 to 3.5 and this will have an effect on the
load~deflection characteristics. The most influential dimensions,
however, are the cone height and disc thickness which can be altered to
provide a variety of different shaped load-deflection curves. This is
shown in the diagram below for single disc springs having cone height to
thickness ratios of 0.5, 1.5 and 2.75, supported in such a manner as to
allow deflections greater than cone height to be achieved. With h/t
ratios around 1.5, a considerable portion of the load-deflection curve is
near-horizontal and this feature can be exploited in certain applications
where near ‘zero rate' is required.



-46-

|

|

l
- A I

/] >< o/
/ VAR Y
IR ETAN
o % [ SRR |

LOAD

| |

0 2 3
FLECTION

Fig 1 Load-Deflection Curves for Various h/t Ratios

By the use of disc springs stacked in series, in parallel, or in
carbination with one another, further variations in the load-deflection
characteristicscan be achieved (Fig 2).

.
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i ff:ﬂ,,// %%_
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"

a
0 1 2 3 mm ‘
Deflection ———

Fig 2 Force Deflection Characteristics for Various Spring Stacks

a)
b)
c)

d)

Single disc;

Two discs stacked in parallel (double force at same deflection);
Spring stack with three single springs stacked in series (triple
deflection); _

Spring stack with three sets in series of parallel pairs (double force
and triple deflection).
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Deflection and Ioad

There is a number of alternative methods for calculating the deflection
and the stresses in disc springs but it is now accepted practice to use
the elastic-disc method based on formulae developed by Almen and Laslo,
provided that the ratio of the outside to inside diameter is less than
3.5. Thus, ignoring the frictional effects, the axial load P, for an
axial deflection of 6, can be calculated from:- '

_ 4ES 1 - () ¢ + C"t3]
T @22 X [z n-9). (-(3) 2
Where:-
QD = Qutside diameter
Di = Inside diameter
M = Poissons ratio
t = Thickness
E = Young's modulus
h = Cone height
C2 = m @+ 1 - 2 o 2
o - l logeu. a - 1
o 2
C"2 = 7 lOgea' (u - l)
Where 6
¢ = Dg
Dj

It can be shown that, for all practical purposes, (32 and C," equal one
another, so that the above formulae for load can be sirrplifiec? to:

4E6C2 ]
T a-u%p2x|h-s). (n -(g\) t + ¢3
2/
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To simplify the calculations of load still further, graphs are available
which relate the factor C. as a function of the diameter ratio (d) and
factor C, as a function o%rs/t and h/t. Using the graphical approach, a
simple 1&ad formula can be used, viz:-

P = 4Et’C1Cy ..iiiiiiinnal(d)
Dbz

The graph for establishing the load factor C2 is given below:-

15 30 25 30
a=D,/D;

Fig 3

To establish the load factor C,, according to the ratios for deflection
and cone height to material thickness, the following curve is used:-

T 1 1ae4 L1
3.0 = STeT I T/
Ein of A LS
7 ol o] SN 1] /
6 / 2.75% A / \1‘ 1{-’7 I /
A LAY L S~ 1o /
55 VA SETI STA ol
o A RST AN INIA A VT ] o~/
S 4 /Y A AV WAVARAVaAVAN
° [ 25 7 yANVA yARVARY. R
& AT TV IR XA TATH T
3 / // 2 7 ( KXY // //‘
5 | r
8 AR d e e S 7
1 /', Z N "ﬁ:‘\
1.25 AN A
o 0.5 “I.0]
) i 2 3 4N, 3.0 L5
Fig 4 [ [ [ [

~|oo
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Stress

The formulae for calculating the stresses within a disc spring are based
on elastic theory and are just as horrendous as those for determining
deflection. Given below are the hasic formulae for calculating the
maximum stress at a point corresponding to the upper edge of the internal
diameter of the disc - ie point A on the disc (compressive stress); the
lower edge of the internal diameter - i.e. point B on the disc (tensile
stress); and the lower outer edge of the outside diameter - i.e. point C
on the disc (tensile stress).

fo = -8t Cg + Cq4 (t_1 _ (G_D
C3 D02 N t 2t

fp = st S | 5 T (f_l - 5_')
C4Do° | t 2

fo = st c5+(2c5-c4)g—_<§
C3 «Dg? t 2t

Compressive stresses are indicated by a negative value whereas tensile
stresses are shown as positive values.

~ )

Cy = 6 x(-l—l
mlogea logga

=3 ( a=- 1)

mlogga

!
182
1

A graphical solution to the stress factors C o C4 and C. is given
below in Fig 5 for a carbon steel (E = 208,000 NXngn and = 0.35).
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Fig 5 Values of Coefficients C3, C4 and C5
Disc springs are subject to compressive stress on the upper face and
tensile stress on the bottam, the former being the major. For springs
subject to a static or rarely-changing load, the limiting stress is
therefore the coampressive one at the upper face (f,). However, for
springs subjected to dynamic loads, the tensile stresses on the lower face
(f. and f ) are the critical stresses and each must be calculated to
degermme %’nmh is the greater.
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Design Example

A static load of 10,000 Newtons requires to be supported by a disc spring
where the space available for the spring element is restricted to a
diameter of 180 mm and a height of about 8.25 mm. In addition, the spring
must be capable of supporting the specified load at a deflection of 7 mm
with a po?siyle 10% over run before it becomes solid and a maximum stress
of 1450 N .

i) Determine the deflection to available space:-
Required deflection = 7.0 + 10% = 7.7 mm
Maximum solid height = approx 8.25 mm

Ratio of deflection/solid height = 7.7 = 0.93
8.25

ii) Select o, the Do/Di ratio:-

This is nommally done by choosing a ratio somewhere in the middle
of the range 1.5 to 3.5 -~ say a= 2.0. If need be this can be
modified at a later stage. To allow clearance on the 180 mm
diameter space a disc having an outside diameter of 175 mm is
selected which gives an inside diameter of Do = 87.5 mm.

iii) Determine the thickness:-

The thickness is determined from the maximum stress equation. The
thickness must be such that the maximum stress is limited to an,,
acceptable level. In this case the limiting value is 1450 N/mm".

As the spring application is static then the equation for the
compressive stress at point A is the critical stress equation.

£y = _=6t _ [cg+c, (h- (51)
C, Do” t 2t

To avoid instability in the load-deflection characteristics the
h/t ratio must be less than 1.4. A convenient value of h/t = 1.0
is therefore selected.
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The value of §/t = 1.0 represents the condition when a disc spring
is compreased flat and the position at which maximom compressive
stress coows.

These values are now used in the stress equation to produce the
following:—

£ o=m ot lc o+ ¢, (1-2\!
c; D2 :_' SN 2 Jd

As 6/t = i, then § = ¢

£ =~c,_t:~,.g '!:c:.i + ¢, 10.5)]

This form:la can now bhe transposed to soive for t. The negatvve
sign is now neglected as it was only an indication for type o
stress (campression}.

2z
C5 + Cc4 {C.5}

A ¥

Fram Fig 5 the stress factors are determined as follows:—
C, = .76 x 1¢°°
c,=1.21
=1
'ad = 1
C; = 1.38
Thus

i_-_-—‘/14:>0x9.'76x i0 ﬁx 175-2

.28 + 1.21 (0.5}

Since a reduction in thickness wilil reduce the stress, let us
assume a convenient thickness of 4 mm, |
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The provisional design is now t = 4.00 mm, Do = 175, a= 2,
thus Di = 87.5 mm, h/t ratio = 1.0 thus cone height = 4.0 mm.

iv) Check on solid load and solid stress:-—
4
P = 4Et C1C2
Do2

Fram Figs 3 and 4 determine C2 and Cl respectively.

C2 for acof 2 = 1.45

C, for h/t of 1.0 and &/t of 1.0 = 1.1

1
Thus solid load = 4 x 208000 x 4% x 1.1 x 1.45
1754
= 11093 N
v) Number of discs:-

Since the required deflection is for 7 mm at a 10,000 N load and
the above spring only deflects 4 mm to solid then more than one
spring will have to be stacked in series.

Determine locad at deflection of 3.5 mm.

5/t = .875 and h/t = 1
a = 2
Thus:-
c. =1
1 _
Cj = 1.45
p = 4etic.c
- 172
Do?
= 4 x 208000 x 4% x 1 x 1.45
1752

1C080 N

il

Hence two discs stacked in series will double the deflection under
the same load and give 7 mm deflection for 10080 N load.
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VOLUTE SPRINGS

"Springs - materials, design and manufacture" defines a volute spring as
"A spring produced from flat section material, helically oociled with its
thickness in the radial direction such that each ooil nests within its
adjacent larger coil".

To achieve the required volute form it is necessary to fabricate the flat
strip or flat bar stock to the developed shape shown in the diagram bhelow
prior to coiling.

outer mner

C(}Il I Aciive iengih LUII

M

Developed blade for conventional volute spring

Normally there will be scme friction between the coils which helps in
damping vibration. However, for fatigue applications, the fretting of
adjacent coils ocould lead to stress concentrations and premature failure.
This can be avoided by designing the spring with space between the ooils.
Volute springs can be ooiled with either a constant or variable helix
angle and the rate characteristics will therefore depend on the nature of
the helix angle variation. Springs coiled with a constant helix angle
will possess both linear and non-linear portions of the load-deflection
curve, the change representing increase in stiffness as the larger outer
coils "bottam" and become inactive. This feature is often exploited in
shock absorbers and railway buffers and also, due to the high wolume
efficiency of this type of spring, used extensively in suspensions for
tanks, transporters and rolling stock. Volute springs can also be made
from light gauge material and probably the most cammon damestic example
would be the "secateur" spring used in garden pruning shears, which in
fact is a double volute spring.

Method The mathematical approach to the design of wolute springs is
exceedmgly canplex and one solution to this problem is to use design
charts and ‘'paired' variables. Although this causes some slight loss of
accuracy the design effort is reduced oonsiderably and the errors
introduced are similar in magnitude to the manufacturing tolerances which
must be allowed for such a spring.
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Nomenclature and Design Chart

.
-~

T
N i Ny
N | NN
NN | NN
S\‘\\ NN T
ORN ¢ NRR
6-! \\,\ N M
i EQ\ Q N |6
—_ 1 1 N
6 N~ N
—-.___L-\- ;\-‘ T ;\'
H\HN.—!L
‘Qr-h4

where: - b = height of section
t = thickness of section
ro = radius of largest active coil
ry = radius of smallest active coil
S¢ = deflection from free to solid
W = load to 0.5 total deflection
Smax = maximum stress
b0 = helix angle of largest active coil (radians)
6 = helix angle of smallest active coil (radians)
n = number of free coils
N = total number of coils
G = rigidity modulus
Pairings:-
A =r./r cescesce 1
1 - Si/ P 5
B = R R
l - rij/rgy
Y = Factor for deflection as a function of A and B
Z =0.1 - 0.09 (load factor) cereeae. 3
Formulae:-
w o=yzetdes L. 4
ro2
‘max =Gt%; -
Arg
6

s " m e s s e

§¢ = nrg 6iY
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Design Check

Given all the pertinent information describing a volute spring it is a
simple matter to check out the maximum stress, total deflection and loads
at half and full deflection as follows.

Information given:- b = 1%mm, t 10mm, N = 5.1/2, n = 4, r, = 95rm,

r, = 50mm, 90 = 0.076, ei = 0.060, G = 79000N/mm" .
i Calculate the ‘pairings' A, B, Y and Z.

A=r./r = 50 = 0.526
i’7o

95
B=1-90,/6 = 1-0.789 = 0.211 = 0.445
1 - 0.526 0.474

1l - ri/r0
Y = 5.6 (fraom Fig 4.)
0.1 - 0.09 x 0.526

0.1 - 0.04734
0.053

Z = Ool - ODOQA

nnn

ii Calculate total deflection to solid from:-

nro 6.Y

i
4 x 95 x 0.06 x 5.6
128mm

st

o

1ii Determine maximum stress from:-—
o] = Gt 0.
max i—
Aro

79000 x 10 x 0.06
0.526 x 95

948.5 N/mn2

iv Detemmine load at 0.5 of total deflection

W o= YZth3 0.,
5
r
(@]
= 5.6 x 0.053 x 79000 x 190 x 10> x 0.06
952
= 29618 N.

v Load at solid length

From Fig 2, the multiplying factor is 3.25
Therefore solid load = 29618 x 3.25
= 96260 N.
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Design Procedure

Using the design charts and ‘paired' variables approach it is necessary,
when designing volute springs from scratch, to make one or two dimensional
estimates in order to work out a preliminary design which can subsequently
be modified to meet the specified requirements. In many cases, however, a
nunber of parameters such as load, deflection, maximum stress, solid
height and outside diameter are specified. A simple design procedure is
as follows:-

i Select a typical helix angle @ , of 0.06 radians, (it may be
necessary to adjust this figuré at a later stage)¥

ii Guided by any information provided on the available space for the
spring, estimate the radius of the largest active ooil (r_), but
bear in mind and allow for the size of the dead-end coil; ©

iii Estimate r., typical ratios of ri/ro being between 0.3 and
0.7;

iv Calculate A = r_/r ;
i’"o

v Fram information provided on the load requirements, choose a
suitable load-deflection curve from Figs 1 to 3 and establish
“pairing" factor B. Formula 2 can then be transposed and, using
factor B, the helix angle of the largest active coil (p ) can be
calculated; °

vi Using Fig 4 the atjx_iliary deflection factor Y can be read off;
vii Calculate Z = 0.1 - 0.09A;

viii Assume a maximum stress (9 .y) at solid of 1000 N/rrm2 and, by
transposing equation No 5, Calculate the material thickness (t);

ix Since the load (W) at 50% of total deflection from free to solid
should always be defined, the required width of section (b) can be
calculated by transposing equation No. 4; )

x The solid height of the spring is defined by the width of the
section (b).

Example

A wolute spring having a free length of about 200 mm is required to fit
inside a hole of 200mm diameter. The load-deflection requirements of the
spring are 9000N at a deflection of 40mm, increasing to 27000N at a
deflection of 80mm, at which point the spring Iieccma solid. The maximum
stress on the spring should not exceed 1000N/mm”:



ii

iii

iv
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vii

viii

ix

xi

xii
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Select helix angle ©0as 0.06 radians.
i

Estimate a value of r . Since the hole is 200mm the radius will
be somewhat less than~100mm. Making an allowance for the thickness
of the dead-end coil and for same clearance, 80mm would appear a
reasonable estimate.

An estimate of the smaller end can then be made, as a guide line
something around half the large end, say r, = 30mm.

80

The ratio of the two load requirements is 27000/9000 = 3. and
fram Fig 2. an estimate of B = 0.5 can be made.

Using B = 0.5 and equation No. 2, a calculation of can be made:

0.5= 1 - (0.06/64,)
1 - 0.375
0 =
o = 0.087

Reference to Fig 4 allows Y to be established as 5.5

Z can be calculated as 0.1 - 0.09 x 0.375
= 0,066

Fram equation No. 5 the thickness can then be calculated:

1000 = 79000t x 0.06
0.375 x 80

t = 6.33mm

Since the free height and required deflection are given, the solid
height can be calculated as 200-80 = 120mm. This value fixes the
maximum width of the material as b = 120mm.

The nunber of active coils can now be calculated using equation
No. 6:

80 =n x 80 x 0.06 x 5.5
n = 3.03

At this stage it is advisable to check the load at 0.5 solid using
equation No. 4:

W = 5.5 x 0.066 x 79000 x 120 x 6.33% x 0.06

802

= 8182N
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xiii Checking the stress (equation 5):

= 79000 x 6.33 x 0.06

amax 0.375 x 80

= 1000 N/mn?

xiv This initial design indicates a wolute spring having the following
dimensions:~ b = 120mm, t = 6.33mm, n = 3, N = 4% a large
outside diameter of about 179mm (2 x 80 + 3 x 6.33) and a small
inside diameter of about 4lmm (2 x 30 - 3 x 6.33), the free
height being 200mm.

xv Examination of xii above indicates the load at half the total
deflection to be weak by about 800 Newtons and, from this point on,
it is a question of making minor adjustments to the dimensions in
order to meet the specification requirements. For example,
increasing the thickness from 6.33mm to 6.5mm will increase this
load to 8860N, only 40 newtons below the specified value. At the
same time, of course, the max. stress will increase, in this case,
by a negligible 26N/mm“.

Xvi Should it be necessary, further modifications to the dimensions of
the spring can be made to meet more closely the specified require-
ments.
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SPIRAL SPRINGS

Under this general heading are included springs coiled from flat strip in
the form of a two dimensional spiral having space between the coils - open
coil (brush springs or hair springs) - or tightly wound with contact
between coils (power springs, motor springs or clock springs).

BRUSH /HAIR SPRINGS

These springs can be conveniently divided according to the method of end
fixation, shape ratio (b/t) and number of coils, viz:-

1. Springs having a large number of coils and large shape ratio (e.g.
10): .

a. outer end of spring clamped rigid
b. outer end located by a pin which allows rotation

2. Springs having few coils (<2.1/2) and a shape ratio less than 10.

Nomenclature:—

strip width

strip thickness

active length of strip

moment 0

nunber of revolutions (i.e. each of 360°) produced by mcment M
bending stress

Young's modulus

HHMS 2D
(1 T I T T T

Case la. — Clamped outer end with many turns

M

Fig 1. Open coil spring with clamped end and many coils
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the standard formulae for springs of this type are:-

M = 7Ebt3n ceteeeeee. (1)
6L

therefore n = 6LM ceeeeenee. (2)
TEbt3

and £f = 6M
bt2

teceseaeas (3)

Should it be necessary to crank either end of the strip for the purpose of
fixing the material to the arbor or to the outer location point the
operating stress in the vicinity of the bend oould be substantially
increased and a stress correction factor should be applied. This factor
is dependent on the severity of the bend D/t, where D is twice the mean
radius of curvature of the bend. The correction factor to apply in such
cases is' shown graphically in Fig 2 below:-

o4

Correction factor
el

1 1
10, n 3 8 10
Shape ratio, D/t

Fig 2 Correction factor for sharp bends

Case 1b. — Pinned outer with many turns

If the outer end of the strip is fitted over a pin which allows the end of
the strip to swivel at this point then the Moment formula (1) given for

clamped ends no longer applies. The modified formula for the mament
becames : -



-63-—

M= 2tEt%bn . e, (4)
15T,

]

therefore n 15LM ceceeaaeaea (5)
27Et3Db

It will be seen that, for the same applied torque, a pinned outer end open
coil spiral spring will have a lower rate than that for a clamped end
spring. The stress also differs from that for a clamped end spring and
for the same applied torque is in fact doubled:-
£f= 1224 ..., oo (6)
bt?2

However, it should be noted that this maximum stress occurs at a point
opposite the pinned end where there is no stress concentration.

Case 2. - Clamped outer end with few turns

Springs fitting this category include balance springs where the outer end
is clamped and only allowed to move in an arc about the spring centre (see
Fig 3.)

>

-

-

%

Fig 3. Spring with clamped ends and few coils
In cases such as this a modification to the standard stress formula
(Equation 3) is necessary, using a factor which takes into account the
spring shape (1) and the number of turns (8) in degrees. The shape factor
is defined as:-

A= 1= (rl/rz)

where rl is the inner end radius

r2 is the outer end radius
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The stress correction factor can best be illustrated graphically as in
Wig 4,

-1

[ie

Q

S

a A
% 6
g 35
& o4

] , . ) . .
3 450 540 530 M 810 WG
ke Total angle of coil, & {degrees)

Fig 4. Stress factor
Likewise the rate of the spring needs modification by a factor which is

related to spring shape {A) and the total nuvber of turns. This relation-
ship is shown in Fig 5. below:-

i
- '.Sr
Py 1
[~}
g2 i
= 4
201 A
g i o6
£ 13} 0.5
[“¢] c.l

|
1 2= i » [ 1 1 =
b 450 540 630 T2 80 900
Tota! angle cf coit, @(degrees}

Fig 5. Stress factor$

Eypicaldesignstresseswmdzareuaedforhalamespﬁgagsaregivmin
the table below.

Stainless - 52C
Beryllium copper 42C
Phosphor bronze 400

Rt I T ——— 2 o N P A
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POWER SPRINGS

Power or clock springs consist of a spiral of flat strip anchored at its
inner end to a central arbor, and at its outer end to the inner surface of
a restraining band or case (see Fig 1). Usually the arbor attachment is
accomplishedi by cranking the end of the strip and fitting it into a slot
cut in the arbor. The outer end of the strip is often fixed via a hole in
the strip which engages with a pin in the case. Since the strip materials
used for power springs are invariably pre-hardened and tempered, it is
necessary to soften the ends of the strip to facilitate hole punching and
bending of the ends. Considerable care is needed during this localized
annealing to. restrict the length of softened material and to ensure a
gradual transition from the soft to the hard zone.

Because of the inter-coil friction, the torque developed by power springs
is samewhat erratic as the spring unwinds. Power springs invariably
operate in the unwinding mode and, starting from the fully wound position,
the delivered torque drops off rather slowly for about 50% of its travel.
Further unwinding causes an increasing rate of torque decay.

Design Procedure

Practical experience has formulated guidelines to help the designer in the
selection of same of the basic parameters:-

i To avoid excessively high stresses in the strip, the arbor
diameter should be at least twenty times the strip
thickness;

ii  In general, the length of strip in the spring should not
exceed 15,000 times the strip thickness if excessive inter-
coil friction is to be avoided;

iii To obtain the best fatigue performance the edge of the
strip should be rounded and preferably ‘dressed’ .
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“orenclature

le———— D, ———>

—» d et Hole

Right-angle
crank

Unwound Spring Wound Spring

Fig 1 Power Spring in wound and unwound states

©6)

Fig 2 Configuration of power spring in free state
(ie uncaged) showing 3% coils.
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t = strip thickness
~ = strip width
= active length of strip
g = mament or torque at any position
T~ ax = Mmaximum mament or torque when fully wound
f = bending stress at any position
fmax = maximum stress when fully wound
F = Young's mcdulus
Dg = inside diameter of the case
a = arbor diameter
ng = number of coils in free (uncaged) state
neo = nunber of active coils in unwound spring in case
ng = punber of active coils in fully wound sprinag in case
An = npumber of active coils delivered at any position
AN = total number of coils available

The basic fcrmulae for the design of power springs can be given as:-

1= 27Ebt3 [(n. - n.) + &n) e (D)
121,
/ 4Lt

Where nc=20 - D02 - m L I (2)

2t
no= (d + znst]ns_ s e % 8 e 8w (3)

2Dy

4Lt

and N g= T +d2'—d cieeesa. (4)

2t

From the above formulae it should be noted that the magnitude of the
torque delivered (M) is dependent on the number of coils in the spring in
the free state (i.e. uncaged). This is best illustrated by reference to
the graph shown in Fig 3
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E‘ig' 3 Torque curve for power spring

Having calculated the moment (torque) at any number of delivered turns
(An) the corresponding hending stress can be calculated from:-

f= 6M ceeeeee. (5)
bt?2

The total number of available turns from a power spring is:-

AN = ng - ng tessease (6)

and therefore the maximunm mament (torque) the sprina will deliver is given

by:-

fﬁnax = 2“Ebt3 [(n(- - no) + AN] L I A (7)
121
Likewise:=
fnax = SMmax ceceeaas (8)
bt 2

Because of the need to allow for an estimate of the number of coils in the
free uncaged state and the problem of £riction, the ahove formulae
relating mament to the number of active turns can show inaccuracies over
the initial and final portions of the load-deflection curve. This is shown
in Fig 4 where the first 30% of wind-up and the last 10% of wind-up
indicate substantial deviations from the torque calculated from
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equation (7) : -

foor
Sont
g 14'\(\6‘“{': ~ ~.
.’5:6._- — . - &-I.J
£ ° / Unwinding ) S
= r i i Calew lalion,
[+] N
= ! i
= -
[+
¥ N
Sut i i

f | ]

0 1 I 1 1 1 i 1 1 1 ]

0 20 10 60 80 100

Percentage of max. wind-up
Fig 4. Typical torque - revolution curve for power spring

Vlhere the maximum number of turns is required from a particular design, it
has beep shown in practice that the area occupied by the strip in the
fully wound-up condition will be about 50% of the space available between
the arbor and case. This optimum condition can be satisfied by choosing a
combination of strip thickness and length such that

Lt: m (Dnz_'- d2)
8 -q-o-oo-(g)

Worked Example

A power spring is required to give a maximum torque of S5000N mm from about
18 to 20 revolutions of an arbor of 20mm diameter. The space available
for the spring allows a case with an inside diameter of 145mm and a depth
which will accommodate a strip width of 28mm. The maximum bending stress
should be limited to about 1700 N/mm>

Therefore data given is:= Mpax= 5000 N mm

frnax= 1700 N/mm?

Do = 145 m
d = 20m
b = 28m

i Calculate the thickness of strip from:=-

¢ = /®Mmax
bfmax
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_ /6 x 5000
t=/728 x 1700

t = 0.79 rm

il Determine active length of strip to meximise the total number of
turns available (AN) from:-

L = TF(DOZ - dz)
8t

7(1452 - 202)

L =
8 x 0.79
L= 10252 mm
iii Calculate ng n. and n_ from equations (2), (4) and (3)
respectively, \
J/ 4 x 10252 x 0.79
ne= 145 - J145¢ - 3.1416
2 x 0.79
= 26.26 coils
ng= J/& x 10252 x 0.79 + 20° - 20
3.1416
2 x 0.79
= 52.85 coils
S, ng= [20 + (2 x 52.85 x 0.79)] x 52.85

2 x 145

18.86 coils

iv  The total number of coils available(ﬂtd)can be calculated from:-

AN = -
N ns nc

52.85 - 26.26

26.59 coils
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v Check the calculated value of coils available ( N) meets the
stipulated requirements. As explained earlier (see Fig. 4),
an allowance should be made to ensure that the spring has
approximately 40% more coils (by calculation) than the
application stipulates. In the example here this condition is
satisfied.

vi Finally, a check is made on the moment (torque) developed at
the specified working position(s) using the equation (1). viz:-

Mpax = 2 X mx 207000 x 28 x 0.793 [(26.26 - 18.86) + 26.53]

= 4961 N mm

In this case the calculated moment is close to the specified value and is
therefore acceptable.

vii If the calculated maximum torque value does not meet the
specified value it will be necessary, as a first option,
to adjust the diameter of the case and re-calculate the torque.
Remember that increasing the case diameter D will cause an
increase in the effective length of the stri.8 and also in the
number of active coils, thereby reducing the maximum torque.
Likewise, decreasing the case diameter will decrease the strip
length and the number of coils which, in turn, will increase
the delivered torque.

Should this optimising procedure fail to produce a spring
within the guidelines given at the beginning of this article
and/or the constraints imposed by the specification, it
will be necessary to modify other dimensions such as the
thickness and width of the strip.

Recommended maximum operating stresses for hardened and tempered higB
carbon steel vary according to,the strip thickness from about 1100 N/mm
at 4mm to approaching 2000 N/mm“ for very thin material around O.25mm.
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GARTER SPRINGS

Garter springs are long helical extension springs usually close coiled
with initial tension. The two ends are joined together either by a
‘connector' or by reducing one end for a short distance and screwing this
into the unreduced end, to form a ring. The purpose of a garter spring is
to exert radial forces to the object to which it is fitted and it finds a

use in a vari_et}r of mechanical apnlicati 1

Ie s -13 o anla armA
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as oil seals and small
motor drive belts. The procedure for checking the design of garter
springs is relatively simple but the initial design is complex and not
normally carried out by springmakers. It is based on extension spring
formulae with modifications to take into account the additional bending
stresses which are imposed.

Nomenclature:-
d = wire diameter
D = mean diameter of the helix
D,.j; = inside diameter of the garter spring
D - shaft diameter
P o= initial tension
S = spring rate
¢ = D/d, spring index
K = correction factor = (¢ + 0.2)/(c-1)
n = number of working coils
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E = Young's modulus

G = Rigidity modulus

p = radial force per unit length

q = cambined stress due to bending and torsion

q; = additional stress due to initial tension
Design Formulae

The basic formulae used for the purpose of checking the design involve the
calculation of spring rate, the radial force exerted by the garter spring
when fitted to a shaft or other similar object, and the total stress
imposed on the spring due to torsion and bending, viz:-

Dri = nd - d

™ 2

S = dG
8ncJ

p = 2|5 4+ l—Dri)S

Ds Ds

qQ = |AD+__ 2 - Gk

D 1 + 2G/E nc

Worked Example

A close coiled garter spring, having an initial tension of 9 Newtons and
170 active coils, is manufactured from 1.2mm carbon steel wire to produce
a helix diameter of 6.8mm. When assembled, the garter is required to fit
over a shaft of 76émm diameter. The radial pressure exerted on the shaft
is unknown and needs to be determined, as does the working stress, to
ensure the material is not overstressed, which would lead to plastic
deformation of the spring and a loss in load.

d = 1l.2rm Po= ON

D = 6.8m Dg= 76mm 5
¢ = D/Ad = 5.66 G = 79.3kN/mm 5
K = 1.258 E = 206.8kN/mm
n = 170

i. Initially calculate the inside diameter of the garter spring when the
ends are joined:-
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Dyy = nd -d
b 2
Dri =170 x 1,2 - 1.2
™ 2
_: = 64.4mm
ri

ii. Calculate the increase in diameter when fitted on the shaft:-

AD = Dg = Dy

= 76-64.4
= 1l.6mm

iii. The next step is to calculate the spring rate:-

S = dc = 1.2 x 79.3 x 1000
8nc3 8 x 70 x 5.663
= 0.386 N/mm

iv. Using the calculated rate, the radial force per unit of circumference
of the shaft can be determined:-

p = 2 Po-i-'rr(l—Dri)S

Dg

Ds

-

+ 3.1416 (1 - _@_&). 0.386]

2
76 76

0.62 N per mm of circumference

Ve The stress is now checked:-

q = |AD+ ____2 . 6Ck
nc

D 1 + 2G/E |
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q = [12 + 2 . 79.3 x 1000 x 1.258
6.8 1+(2x79.3x100 170 x 5.66
20.6.8 x 1000
g = 300.2 N/m?

Note, for springs wound with initial tension, account should be taken of
the additional stress developed as a result of the initial tension, viz:-

qgi = SCPOK = 8 x 5.66 x 9 x 1.258
nd? 3.1416 x 1.2°
= 113.3 N/mn®
Therefore the total stress (q + qi) = 300.2 + 113.3

= 413.5 N/mn2



