THE SPRING RESEARCH AND MANUFACTURERS' ASSOCIATION # COMPARISON OF BRITISH AND FOREIGN STANDARD SPECIFICATIONS FOR SPRING MATERIALS Report No. 418 Reprinted from the series appearing in SRAMA's Newsletter September 1986 - July 1987 AUGUST 1988 # COMPARISON OF BRITISH AND FOREIGN STANDARDS SPECIFICATIONS FOR SPRING MATERIALS Report No 418 | CON | DENIS | Page No | |-----|--|---------| | 1. | INTRODUCTION | 1 | | 2. | COLD DRAWN CARBON STEEL SPRING WIRE | 3 | | 3. | MUSIC STEEL SPRING WIRE | 10 | | 4. | PRE-HARDENED AND TEMPERED CARBON STEEL SPRING WIRE | 14 | | 5. | 1% CHROME-VANADIUM OIL HARDENED AND TEMPERED SPRING WIRE | 20 | | 6. | SILICON-CHROME PRE-HARDENED AND TEMPERED SPRING WIRE | 24 | | 7. | STAINLESS STEEL SPRING WIRE | 28 | | 8. | MOLYBDENUM-BEARING STAINLESS STEEL SPRING WIRE | 32 | | 9. | 17/7 PH STAINLESS STEEL SPRING WIRE | 36 | | 10. | SPRING BRASS AND COPPER-NICKEL SPRING WIRE | 40 | | 11. | PHOSPHOR BRONZE SPRING WIRE | 44 | | 12 | COPPER-REDYLLTIM SPRING WIRE | 47 | © SRAMA 1988 AUGUST 1988 ### THE SPRING RESEARCH AND MANUFACTURERS' ASSOCIATION Report No. 418 # COMPARISON OF BRITISH AND FOREIGN STANDARD SPECIFICATIONS FOR SPRING MATERIALS #### 1. INTRODUCTION This report collects together the articles presented in a monthly series in SRAMA's Newsletter, tabulating British and equivalent foreign standards for an exhaustive range of materials for wire springs. The series appeared in the Technical section of the Newsletter between September 1986 and July 1987 and covered eleven material qualities whose major features, for ease of reference, were presented in tabular form for composition, tensile strength, formability and surface quality. wherever possible, to facilitate production of the report, the original text and format have been reproduced, which explains the lack of consistency in type-face and size (especially in the tables, some of which had to be reduced to fit the physical constraints of paper size). However, every effort has been made to excise repetitions and irrelevancies. We hope that members will find this of value as a reference document, to be used as an extension of the information contained in SRAMA's "Spring Materials Selector". # Explanatory Notes:- (a) The major features of the various national specifications listed should be sufficient for most purposes. For more detailed comparison, the up-to-date editions of the standards quoted should always be consulted since similar specifications do vary in minor details. (b) Many spring users indicate their requirements by reference only to material composition rather than specifying the appropriate spring wire standard. Attention is drawn to the fact that the use of 'steel grade' numbers defines only the chemical composition and not the mechanical and metallurgical conditions. # 2. COLD DRAWN CARBON STEEL SPRING WIRE Carbon steel spring wire is by far the most important and widely used material for the manufacture of light helical springs. It derives its strength from a combination of heat treatment (Patenting) and cold working by drawing. These wires are produced to a variety of quality grades by rod selection, composition and the degree of control exercised on surface imperfections. # A. COMPOSITION | Wire
Specification | Origin | Steel
Grade | % C | % Si | % Mn | % S
max | % P
max | | |--------------------------|---------|----------------------------|---|-------------------------------------|---|------------------------------|----------------------|--------| | BS 5216
1975 | UK | NS
HS
ND | 0.45-
0.85
0.45-
0.85
0.55-
0.85 | 0.35 max 0.35 max 0.35 max 0.35 max | 0.4-
1.0
0.4-
1.0
0.3-
1.0 | 0.05
0.05
0.03
0.03 | 0.05
0.05
0.03 | | | S201:1967
S202:1967 | UK | | 0.85
0.55-
0.85
0.55-
0.85 | 0.1-
0.35
0.1-
0.35 | 1.0
0.3-
1.0
0.3-
1.0 | 0.03 | 0.03 | | | DEF106:1961 | UK | | 0.75-
0.85 | 0.3 max | 0.5-
0.7 | 0.02 | 0.02 | | | ASTM A227
1983 | US | | 0.45-
0.85 | 0.15~
0.35 | 0.3-
1.3 | 0.05 | 0.04 | | | ASTM A679
1983 | us | | 0.65-
1.0 | 0.1-
0.4 | 0.2-
1.3 | .0.05 | 0.04 | | | SAE J113:69 | US | 1
2 | 0.45-
0.75
0.50-
0.85 | 0.1-
0.3
0.1-
0.3 | 0.6-
1.3
0.6-
1.3 | 0.05 | 0.04 | | | SAE J271:72 | US | | 0.7-
1.0 | 0.1-
0.3 | 0.2-
1.3 | 0.04 | 0.04 | | | SAE J172:70 | US | | 0.6-
0.75 | 0.15-
0.3 | 0.6-
0.9 | 0.03 | 0.025 | | | DIN 17223
Part 1:1984 | Germany | A
B* | 0.4-
0.85
0.4-
0.85 | 0.35 max | 0.3-
1.0
0.3-
1.5 | 0.04 | 0.04 | Cu 0.2 | | SIS 141774:
1979 | Sweden | 1774-
04
1774-
05 | 0.6-
0.95
0.6-
0.95 | 0.15-
0.4
0.15-
0.4 | 0.3-
0.8
0.3-
0.8 | 0.035 | 0.035 | | | G 3521:1980 | Japan | SW-A
SW-B
SW-C | 0.39-
0.86 | 0.15-
0.35 | 0.3- | 0.04 | 0.04 | | * The German DIN 17223 steel grade B specifies three carbon and manganese ranges within those quoted in the table to accommodate increases in section size. ### Commentary: The Japanese standard G3521 does not specify compositions but refers to G3506 which contains a series of 21 steels having more closely defined carbon contents, each of 0.07% range. The choice of carbon level is governed by the tensile strengths specified in G3521, the selection being made by the manufacturer. The majority of the standards specify fairly wide carbon ranges but, in practice, wire manufacturers will select a somewhat tighter range depending on the type of patenting employed, the finished wire size and the required tensile strength. #### B. TENSILE STRENGTH | | 2
Strength Rm (N/mm) | | | | | | | | |---|--|---|---|---|--|--|--|--| | Wire
Dia
(mm) | Grade l
(NS) | BS 5216
Grade 2
(NS,HS,ND,HD) | Grade 3
(HS,ND,HD) | S201 | S202 | | | | | 0.10
0.20
0.50
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
12.0
15.0
20.0 | 1370-1570
1250-1450
1170-1370
1110-1310
1050-1250
1010-1210
970-1170
940-1140 | 2340-2640
2060-2320
1790-2010
1570-1770
1450-1650
1370-1570
1310-1510
1250-1450
1210-1410
1170-1370
1140-1340
1120-1320
1060-1260 | 2640-2940
2320-2580
2010-2230
1770-1970
1650-1850
1570-1770
1510-1710
1450-1650
1410-1610
1370-1570
1340-1540
1320-1520
1260-1460 | 2317 min
2162 min
1853-2008
1699-1853
1544-1699
1390-1544
1390-1544
1235-1390
1081-1235
1081-1235
1081-1235 | 2471 min
2317 min
2008-2162
1853-2008
1699-1853
1544-1699
1544-1699
1390-1544
1235-1390
1235-1390
1235-1390
1235-1390 | | | | | | 2
Strength Rm (N/mm) | | | | | | | | |---|---|---|---|--|--|--|--|--| | Wire
Dia
(mm) | DEF 106 | AS
Class I | TM A227
Class II | ASTM
A679 | SAE
Class l | J113
Class 2 | | | | 0.10
0.20
0.50
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
12.0
15.0
20.0 | 2625 min
2625 min
2239-2394
2008-2162
1776-1930
1621-1776
1621-1776
1544-1699
1467-1622 | 1960-2240
1770-2040
1580-1810
1460-1680
1380-1590
1320-1510
1280-1470
1220-1410
1190-1370
1160-1340
1130-1310
1090-1260
1030-1190 | 2240-2520
2040-2310
1810-2040
1680-1900
1600-1900
1510-1700
1470-1650
1410-1600
1370-1550 | 2410-2670
2160-2390
1940-2150
1810-2000
1730-1910
1650-1830 | 1960-2240
1770-2040
1580-1810
1460-1680
1380-1590
1320-1510
1280-1470
1220-1410
1200-1380
1160-1340
1140-1320
1100-1270 | 2240-2520
2040-2310
1810-2040
1680-1900
1600-1900
1510-1700
1470-1650
1410-1600
1380-1560
1340-1530
1320-1510
1270-1450 | | | | | Strength Rm (N/mm) | | | | | | | | |---|--
---|--|--|---|--|--|--| | Wire
Dia
(mm) | SAE J271 | SAE J172 | DIN 1722
Grade A | 3: Part l
Grade B | SIS 1
1774-04 | 4 17 74
1774-05 | | | | 0.10
0.20
0.50
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
12.0
15.0
20.0 | 2415-2670
2165-2400
1945-2150
1815-2005
1730-1910
1650-1830
1600-1775
1545-1720
1500-1675
1470-1650
1440-1610
1380-1550 | 1620-1758
1620-1758
1586-1724
1517-1655
1482-1620 | 1720-1970
1520-1750
1410-1620
1320-1520
1260-1450
1210-1390
1160-1340
1120-1300
1090-1260
1060-1230 | 2200-2470
1980-2220
1760-1970
1630-1830
1530-1730
1460-1650
1400-1580
1350-1530
1310-1480
1270-1440
1240-1400
1180-1340
1110-1260
1020-1150 | 1900-2200
1750-2000
1550-1800
1500-1750
1400-1650
1300-1500
1200-1400
1200-1400
1150-1350
1150-1350
1050-1250 | 2750-3100
2650-3000
2450-2750
2300-2550
2050-2250
1850-2050
1750-1950
1650-1850
1500-1700
1400-1600
1400-1600
1350-1550
1350-1550
1250-1450 | | | | | 1 | | | | | | | |---|--|---|---|--|--|--|--| | : | Strength Rm (N/mm ²)
J.I.S G352l | | | | | | | | Wire
Dia
(mm) | Class A | Class B | Class C | | | | | | 0.10 | 2010-2350 | 2350-2700 | 2700-3040 | | | | | | 0.20
0.50
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
12.0
15.0
20.0 | 1910-2210
1620-1910
1470-1720
1270-1470
1180-1370
1180-1370
1130-1320
1030-1230
980-1180
980-1180
930-1130
930-1130 | 2210-2500
1910-2210
1720-1960
1470-1720
1370-1570
1320-1570
1320-1520
1230-1420
1180-1370
1180-1370
1130-1320
1130-1320
1080-1280 | 2500-2800
2210-2500
1960-2210
1720-1960
1570-1810
1570-1770
1520-1720
1420-1620
1370-1570
1370-1570
1320-1520
1320-1520
1280-1470 | | | | | - Notes:- i) The UK defence standard DEF 106 specifies a reduction of area on tensile testing of greater than 35% for all wires above 1.2 mm diameter. - ii) The SAE J172 standard calls for 40% minimum R of A on all sizes. - iii) The German DIN 17223 specifies minimum reduction of areas as:1 mm to less than 4 mm wires 40%; 4 mm to 7 mm wires 35%; 7 mm to 10 mm sizes, 30%. # Commentary: All countries offer more than one tensile range to cater for springs that are lowly stressed as well as for those where the operating stresses are high. In addition, the UK and Japan provide an extra class of material where the tensile strengths are relatively low to satisfy applications where material of high formability is needed. On the whole, the highest tensile strengths are obtained from BS 5216 Grade 3, and the American standards A679 and J271. The new German and ASTM standards now extend their sizes beyond $12\,$ mm diameter and, in the case of the former, this is increased to $20\,$ mm. # C. FORMABILITY | | | | | T | |-------------------|---------------------------|----------------------------------|-----------------------------|----------------------------------| | Specification | Torsion
Test
(mm) | Bend
Test (180 ⁰) | Wrap
Test
(mm) | Wrap and
Stretch Test
(mm) | | BS 5216 all | >.4 to 10 | 3 to 6.5 | <3 on ld | | | qualities | | on 2d
>6.5 on 3d | | | | S201 | <5.1 | >2.2* | <2.2 | | | S202
DEF 106 | <5.1
all sizes | >2.2* | <2.2
.5 to 2 | | | A227 Class I | | | on 2d
.5 to 2 | | | 7 | | | on 2 d
>4 to 8
on 2d | | | A227 Class II | | | .5 to 4 | | | п | | | on 2d
>4 to 8
on 4d | | | A679 | | | .5 to 3 | | | | | | on 2d
>3 to 5.2
on 4d | | | J113 | | | as A227 | | | J271 | | | .5 to 4 | | | | | | on 2d
>4 to 7.9
on 4d | | | J172 | | | | | | DIN 17223 | >.7 to 7 | | | <.7 on 3d | | Grades
A and B | >7 to 10
Guidance only | | | (Grade B
only) | | SIS 1774-04 | .5 to 5 | >5 on 4d | <2.5 on 1d | | | and -05
G3521 | <6 | >6* | <6 on ld | | ^{*}S201, S202 and G3521 are subject to a 90° reverse bend test. # Commentary: The majority of standards favour the wrap test as a means of assessing formability. None of the American standards uses the torsion test or the bend test as a method of determining formability, the SAE valve spring wire standard J172 having no requirements at all with respect to assessing formability. # D. SURFACE QUALITY | Specification | Deep Etch
Test | Max Defect
depth | Complete | Decarbur:
Partial | isation
 Gradient | Total | |-----------------------------|---|--------------------------------|--------------------------|-----------------------------------|-----------------------|---------------------------| | BS 5216 NS | all sizes | | | | | | | HS
ND
HD
S201 | all sizes all sizes all sizes all sizes | 3%
1.5%
Nil | Nil
Nil
Nil
Nil | 3%
1.5%
Nil
1.5% | Nil | 3%
1.5%
Nil
1.5% | | S202
DEF 106 | all sizes
all sizes | Nil
Nil | Nil
Nil | Nil
Nil | Nil
Nil | Nil
Nil | | A227 | | * | | | | | | A679
J113 | | *
3.5% or | | | | | | J271
J172 | all sizes | 0.25 mm whichever is smaller " | Nil | 0.025 to
0.037 mm
depending | | | | DIN 17223 | | * | | on size | | | | Grades A & B
SIS 1774-04 | | * | | | | | | and -05
G3521 | | * | | | | | ^{*} only general statements that wire shall be free from harmful defects. # Commentary: It is clear that the UK places more importance on the deep etch test than its foreign counterparts. It is also significant that few of the foreign standards quantify maximum allowable defect depths and, of the foreign standards examined, only J172 (a valve spring quality) places any restriction on surface decarburisation. When making this comparison, however, it should be noted that the high quality Grades C and D of DIN 17223 have not been included here since they are essentially music wire and are considered in Chapter 3 of this report. # 3. MUSIC STEEL SPRING WIRE Music steel spring wire is produced from steel having a higher carbon content than the general purpose patented cold drawn spring wires. It is characterised by its very high tensile strength and high surface quality and is particularly suitable for spring and wire form applications subjected to high stresses. #### A. COMPOSITION | Wire
Specification | Origin | Steel
Grade | %C
min max | %Si
min max | %Mn
min max | %S
max | %P
max | |-------------------------|---------|-------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------|-------------------------| | BS5216
1975 | UK | М | 0.70-1.00 | 0.35 | 0.25-0.75 | 0.03 | 0.03 | | ASTM
A228:83 | US | | 0.70-1.00 | 0.10-0.30 | 0.20-0.60 | 0.03 | 0.025 | | SAE
J178:70 | US | | 0.80-1.00 | 0.10-0.30 | 0.20-0.60 | 0.03 | 0.025 | | DIN 17223
Sheet 1:84 | Germany | C and D | 0.50-1.00 | 0.35 | 0.30-1.50 | 0.03 | 0.03 | | SIS
14-17-74:79 | Sweden | 17 74-06 | 0.60-0.95 | 0.15-0.40 | 0.30-0.80 | 0.035 | 0.035 | | JIS
G3522:82 | Japan | SWP - A
SWP - B
SWP - V | 0.60-0.95
0.60-0.95
0.60-0.95 | 0.12-0.32
0.12-0.32
0.12-0.32 | 0.30-0.60
0.60-0.90
0.30-0.90 | 0.025
0.025
0.025 | 0.025
0.025
0.025 | Note:- The copper content of wires to G3522 is specified as 0.20% max. for SWP-A and SWP-B wires. The valve spring wire SWP-V has a limiting value for copper of 0.15%. The standard G3522 does not specify the actual composition of wires but refers the reader to G3502 which includes a series of 18 steels having more closely defined carbon contents, each of 0.05% range. # Commentary: The UK and US standards in general specify higher minimum carbon contents than do the German, Swedish and Japanese standards. # B. TENSILE STRENGTH | | | Strength Rm (N/mm ²) | | | | | | | | | | |---|---|--|---|--
--|---|--|--|--|--|--| | Wire
Dia (mm) | BS52
Grade 4 | 216 M
Grade.5 | A228 and
J178 | DIN]
Grade C | 17223
 Grade D | SIS
1774 <i>-</i> 06 | | | | | | | 0.10
0.20
0.50
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
12.5
16.0
20.0 | 3020-3400
2760-3090
2440-2670
2240-2390
1970-2120
1850-2000
1770-1920 | 3400-3780
3090-3420
2670-2900
2390-2540
2120-2270
2000-2150 | 3000-3300
2700-3000
2400-2650
2150-2400
1950-2200
1800-2000
1700-1900
1650-1850
1660-1800 | 1980-2200
1840-2040
1740-1930
1660-1840
1590-1770
1540-1710
1490-1660
1450-1610
1410-1570
1330-1480
1240-1390
1160-1300 | 2800-3100
2800-3100
2480-2740
2230-2470
1980-2200
1840-2040
1740-1930
1660-1840
1590-1770
1540-1710
1490-1660
1450-1610
1410-1570
1330-1480
1240-1390
1160-1300 | 3150-3500
2900-3200
2650-2900
2400-2650
2150-2350 | | | | | | | | Strength Rm (N/mm ²) | | | | | | |---|--|---|---|--|--|--| | Wire
Dia (mm) | G3522
SWP-A | G3522
SWP-B | G3522
SWP-V | | | | | 0.10
0.20
0.50
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0 | 2795-3089
2599-2844
2305-2550
2059-2256
1814-2010
1667-1863
1667-1814
1618-1765
1520-1667
1471-1618
1471-1618
1422-1569 | 3089-3383
2844-3089
2550-2795
2256-2452
2010-2206
1863-2059
1814-1961
1765-1912
1667-1814 | 1765-1912
1667-1814
1667-1814
1618-1765
1520-1667 | | | | Note:- The German DIN 17223 Sheet 1 standard specifies minimum reduction of area values as 1 mm to 3.8 mm wires 40%; 4 mm to 7 mm wires, 35%; 7.5 mm to 10 mm wires, 30%. #### Commentary: The British Grade 5 music wire has, in general, the highest tensile strength when compared with foreign standards for similar sized wires. Historically, music wires have been confined to sizes less than about 4 to 6 mm but both the Germans and Japanese have recently introduced 'music or piano' wires which extend to 20 mm diameter and 10 mm diameter respectively. #### C. FORMABILITY | Specification | Torsion
Test | Bend
Test (90 ⁰) | Wrap
Test | Wrap &
Stretch Test | |-------------------|-------------------------------------|---------------------------------|--------------------------------|---| | BS5216 M | | | >0.2mm on | | | A228 and J178 | | | all sizes on 1d
(J178 only) | <2.6mm on 3d
extend to 3 times
length | | DIN 17223 Sheet 1 | O.7 to 7mm >7 to lOmm guidance only | | <u></u> | <0.7mm on 3d extend to 2 to 4 times the coiled length | | SIS 17 74-06 | 0.5 to 5mm | >5mm (180°) | <2.5mm on ld | | | G3522 | <6mm | >6mm | | guidance only | # Commentary: Comparing the above standards, there would appear to be little common ground with respect to a preferred formability test. Clearly the bend test is least popular but, for small wire sizes, foreign standards seem to favour a wrap and stretch test. # D. SURFACE QUALITY | Specification | Deep Etch
test | Max defect
depth | Complete | Decarburis
 Partial | ation
 Gradient | Total | |----------------------|-------------------|---------------------------------------|----------|-------------------------|---------------------|--------------------------| | BS5216 M | all sizes | 1.5% | Nil | 1.5% Max | | | | A228 | | | | | | | | J178 | all sizes | 1% | | 1% Max | | | | DIN 17223. Grade D | all sizes | 1% | Nil | 1.5% Max | | | | SIS 17 74-06 | | | | | | | | G3522 SWP-A
SWP-B | >1.Omm | 0.02 to 0.08mm according to wire size | | | | | | SWP-V | >1.Omm | 0.01 to 0.03mm according to wire size | Nil | | | 1.5% or
0.05mm
Max | # Commentary: All standards (with the exception of A228) stipulate deep etch testing and specify maximum defect levels as a percentage of wire diameter or, in the case of the Japanese standard, as a dimension. For the SWP-A and SWP-B qualities, these dimensions equate to approximately 1% of the wire diameter. For the SWP-V wire, maximum defect levels equate to 0.5% of the wire diameter. Limits on decarburisation at 1 to 1.5% are similar and none of the standards allows complete decarburisation. It is surprising, however, that the American A228 and Japanese G3522, SWP-A and B qualities do not specify limits on decarburisation. # 4. PRE-HARDENED AND TEMPERED CARBON STEEL SPRING WIRE # A. COMPOSITION | Wire
Specification | Origin | Steel
Grade | %C
Min Max | %Si
Min Max | %Mn
Min Max | %S
Max | %P
Max | |---------------------------------|----------------|----------------------------|-------------------------------------|-------------------------------------|-------------------------------------|----------------------|-----------------------| | BS 2803
1980 | UK | 095A65
094A65
093A65 | 0.55 0.75
0.55 0.75
0.55 0.75 | 0.30
0.30
0.30 | 0.60 1.20
0.60 1.20
0.60 1.20 | 0.05
0.04
0.03 | 0.05
0.04
0.03 | | ASTM A229: 83 | US | - | 0.55 0.85 | 0.15 0.35 | 0.30 1.20 | 0.05 | 0.04 | | ASTM A230: 83 | US | - | 0.60 0.75 | 0.15 0.35 | 0.60 0.90 | 0.03 | 0.025 | | SAE
J316: 70
SAE J351: 68 | us
us | А
В
~ | 0.60 0.85
0.60 0.75
0.60-0.75 | 0.15 0.30
0.15-0.30
0.15 0.30 | 0.90 1.20
0.60 0.90
0.60 0.90 | 0.05
0.05
0.03 | 0.04
0.04
0.025 | | DIN 17223
Sheet 2: 64 | Germany | FD
VD | 0.60-0.70 | 0.25
0.25 | 0.50 0.90
0.50 0.90 | 0.03
0.02 | 0.03
0.03 | | SIS
14-17-70; 85 | Sweden | 1770-03 | 0.65-0.80 | 0.15-0.40 | 0.50 0.80 | 0.035 | 0.035 | | G3560: 83
-G3561: 82 | Japan
Japan | SWO-A
SWO-B
SWO-V | 0.54-0.76
0.64-0.86 | 0.15-0.35
0.15-0.35 | 0.30-0.90
0.30-0.90 | 0.04
0.03 | 0.04
0.03 | Note: The compositions given for G3560 and G3561 encompass a series of carbon steels whose carbon, manganese, sulphur and phosphorous contents are more closely defined. # Commentary: All the steels have carbon contents around the eutectoid composition, with the German steels having the narrowest range of carbon. As would be expected, the higher valve spring wires limit the sulphur and phosphorus contents to lower levels. All qualities contain appreciable amounts of manganese to aid hardenability and, in the case of SAE J316, quote two manganese ranges depending on the final size of wire to be heat treated. For example, for wire sizes greater than 4.8mm, the high manganese range of 0.9 to 1.2% is specified. ### B. TENSILE STRENGTH (See overleaf) Note: Specifications A230, J351, DIN 17223 FD and VD, and G3561 specify a minimum reduction of area of the tensile test piece, eg A230, J351 wires over 2.5mm diameter - 40% minimum; DIN 17223 FD and VD wires, a variable minimum R of A value ranging from 35% to 45% according to wire size: G3561 wires, < 4 mm 45% min, > 4 mm 40% min. ### Commentary: Comparing the 13 different pre-hardened and tempered tensile ranges, only the American ASTM and SAE specifications have identical tensile properties. Because of the variation in tensile properties among the other standards, care is needed when attempting to equate one wire standard with another. In general, the UK and German FD quality wires appear to have the nearest similarity regarding tensile strength. There would seem to be no consistent pattern with respect to the tensile strengths of valve spring quality wires when compared with their own national general purpose standards. B. TENSILE STRENGTH (PRE-HARDENED AND TEMPERED CARBON STEEL) | Wire Dia
(mm) | | | | | Strength Rm (N/mm ²) | (N/mm ²) | | | | | |---|--|--|--|--|---|--|--|---|---|---| | | BS 2803 | A229
Cless I
and J316
Class I | A229
Class II
and J316
Class II | A230 and
J351 | DIN
17223 FD | DIN
17223 VD | SIS
1770-03 | 63560
SW0-A | G3560
SWO-B | G3561
SWD-V | | 0.25
1.0
2.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
10.0
12.5
14.0 |
1910-2170
1860-2110
1770-2000
1630-1800
1540-1690
1480-1630
1430-1580
1360-1530
1350-1500
1370-1470
1300-1450
1240-1430 | 2050-2250
1800-2000
1600-1800
1500-1700
1400-1580
1350-1520
1300-1480
1280-1450
1280-1450
1220-1400
1200-1300
1120-1300 | 2230-2450
2060-2280
1820-2020
1690-1860
1600-1780
1520-1700
1480-1660
1450-1630
1430-1630
1400-1580
1350-1530
1320-1500 | 1700-1850
1650-1800
1600-1750
1580-1720
1520-1680
1500-1650 | 1765-1961
1618-1765
1520-1667
1400-1628
1402-1550
1402-1550
1363-1510
1295-1442
1295-1442
1295-1402
1255-1402 | 1667-1814
1520-1618
1432-1530
1402-1500
1344-1442
1304-1402 | 1600-1800
1550-1750
1500-1700
1450-1600
1400-1550
1350-1500
1300-1450
1300-1450 | 1569-1716
1471-1618
1422-1569
1373-1520
1324-1471
1226-1373
1226-1373
1226-1373
1177-1324 | 1716-1863
1618-1765
1569-1716
1520-1667
1471-1618
1373-1520
1373-1520
1373-1520
1373-1520 | 1618-1765
1569-1716
1569-1716
1520-1667
1471-1618 | # C. FORMABILITY | Specification | Torsion Test | Bend Test
(180°) | Wrap Test | |---|---|----------------------------|---| | BS 2803
A229
J316
A230
J351
DIN 17223 FD
VD
SIS 1770 | 1.5 to 10 mm
-
-
By agreement
1 mm to 7.5 mm* | > 3 mm
-
-
-
- | 1 to 3 mm on 1d
< 4 mm on 1d
> 4 mm to 8 mm on 2d
< 4 mm on 1d
> 4 mm to 6.5 mm on 2d | | G3560 | - | > 6 mm** | < 4 mm on 1d
> 4 mm on 2d | | G3561 | 2.0 to 6 mm* | - | < 4 mm on 1d
> 4 mm on 2d | - * Reverse torsion test - ** 90° bend angle # Commentary: The wrap test is the most common method of assessing formabi8lity, the bend test being the least popular. Both Germany and Japan favour a reverse torsion for valve spring quality wires. Only the UK applies all three methods of assessing formability. # D. SURFACE QUALITY | | Total | 4% or 0.25 mm
3% or 0.2 mm
1.5% or 0.12 mm
0.5% or 0.01 mm | 2% on < 6 mm wire
0.125 mm on |)
1
3
1
3
1
3
1
3
1 | ı | 1.5% or 0.05 mm | |-------------------|----------|---|--------------------------------------|---|--|---| | Decarburisation | Gradient | rem
rem
0.5% or 0.01 mm | ı | 1 | | Statement
 | | Decarbu | Partial | 1% or 0.06 mm
0.75% or 0.05 mm
0.375% or 0.03 mm
Nil | < 0.04 mm | 0.025 mm on
< 4.8 mm wire
0.0375 mm on
> 4.8 mm wire | | General | | | Complete | 0.8% or 0.05 mm
Nil
Nil | Ni1
0.5% | N±1 | Nil | Lin | | Max Defect Depth | | 3% or 0.2 mm
2% or 0.15 mm
1% or 0.1 mm
Nil | General statement
3.5% or 0.25 mm | General statement | General statement
General statement | General statement
0.01 mm < 2 mm
wire
0.5% on > 2 mm
wire | | Deep Etch
Test | | All sizes
All sizes
All sizes
All sizes | All sizes
- | All sizes | -
All sizes | All sizes
All sizes | | Specification | | BS 2803 NS
HS
ND
HD | A230
J316 | 1351 | DIN 17223 FD
VD | SIS 14-17-70
63560
63561 | N.B. The defect and decarburisation levels specified are qualified, "whichever is the smaller" # Commentary: Within the British standard there are four quality grades compared with two in the German standard. The remaining standards only define one quality. Foreign standards for general purpose spring wire tend to specify quality only in the broadest terms — if at all! More specific information is provided for the high quality valve spring wires but this is not as comprehensive as that given for the British ND and HD qualities. Materials having broadly similar compositions which could be used as prehardened and tempered spring steel wire include the following:- UK - En 42 US - SAE/AISI 1060, 1070, 1078 Germany - WkSt 1.1230, 1.1250, 1.1231, Ck67 France - XC65, XC70 Italy - C70 # 5. 1% CHROME-VANADIUM OIL HARDENED AND TEMPERED SPRING WIRE # A. COMPOSITION | Wire
Specification | Origin | Steel
Grade | %C
min max | % Si
min max | % Mn
min max | s s
max | % P
min max | % Cr
min max | % V
min | |-----------------------|--------|----------------|---------------|-----------------|-----------------|------------|----------------|-----------------|------------| | BS 2803
1980 | 눔 | 735A50 | .46 .54 | .10 .35 | 06. 09. | .035 | .035 | .80 1.10 | 0.15 | | ASTM
A231:83 | SN | | .48 .53 | .15 .35 | .70 .90 | .040 | .040 | .80 1.10 | 0.15 | | ASTM
A232:77 | Sn | | .48 .53 | .20 .35 | .70 .90 | .035 | .020 | .80 1.10 | 0.15 | | SAE J132
1974 | SN | | .48 .53 | .20 .35 | .70 .90 | .035 | •020 | .80 1.10 | 0.15 | | SIS
14-22 30 | MS | 22 30 | .48 .55 | .15 .40 | .70 1.00 | .035 | .035 | .90 1.20 | 0.10 - 0.2 | | JIS
63565:86 | Japan | SWDCV-V | .45 .55 | .15 .35 | .65 .95 | .025 | .025 | .80 1.10 | .1525 | # B. TENSILE STRENGTH | | | | Strength F | R _m (N/mm ²) | | | |---------------|-----------|-----------|------------|-------------------------------------|-----------|-----------| | Wire Diameter | BS 2803 | A231 | A232 | J132 | 14-22-30 | G3565 | | 0.5 | | 2060-2260 | 2070-2240 | 2070-2240 | | | | 1.0 | 1970-2120 | 1940-2100 | 1930-2100 | 1930-2100 | | | | 2.0 | 1780-1930 | 1780-1930 | 1760-1900 | 1760-1900 | 1600-1800 | 1570-1720 | | 3.0 | 1670-1820 | 1660-1800 | 1640-1780 | 1640-1780 | 1550-1750 | 1570-1720 | | 4.0 | 1580-1730 | 1580-1720 | 1565-1700 | 1565-1700 | 1500-1700 | 1520-1670 | | 5.0 | 1530-1680 | 1520-1640 | 1500-1640 | 1500-1640 | 1450-1600 | 1470-1620 | | 6.0 | 1490-1640 | 1460-1600 | 1460-1600 | 1460-1600 | 1400-1550 | 1470-1620 | | 7.0 | 1450-1600 | 1420-1560 | 1430-1565 | 1430-1565 | 1350-1500 | 1420-1570 | | 8.0 | 1430-1580 | 1400-1540 | 1400-1540 | 1400-1540 | 1350-1500 | 1370-1520 | | 9.0 | 1400-1550 | 1380-1520 | 1380-1520 | 1380-1520 | 1300-1450 | 1370-1520 | | 10.0 | 1380-1530 | 1360-1500 | 1360-1500 | 1360-1500 | 1300-1450 | 1370-1520 | | 12.5 | 1360-1510 | 1320-1460 | 1320-1455 | 1320-1455 | 1250-1400 | | Note:- Specifications A231, A232, J132 and G3565 specify minimum reduction of area values on wires above 2.0mm diameter, e.g. 45% minimum R of A up to but not including 4.0mm. Above 4mm a 40% minimum is stipulated. # C. FORMABILITY | Specification | Torsion Test | Bend Test (180 ⁰) | Wrap Test | |---------------|--------------|-------------------------------|------------------------------| | BS 2803 | 1.5 to 10 mm | >3 mm | 1 to 3mm on 1d | | A 231 | - | _ | <4mm on 1d
4 to 8mm on 2d | | A 232 | - | - | <4mm on 1d
4 to 8mm on 2d | | J 132 | - | - | <4mm on 1d
4 to 8mm on 2d | | 14-22-30 | - | >4 mm | up to 4mm on 2d | | G 3565 | <6 mm | >6 mm* | <4mm on 1d
>4mm on 2d | # * 90° bend angle # D. SURFACE QUALITY | | | | | Decarburisati | lon | | |---------------|-------------------|--|----------|--|-------------------|--------------------------| | Specification | Deep etch
Test | Max. Defect Depth | Complete | Partial | Gradient | Total | | BS 2803 HS | All sizes | 2% or 0.15mm | NIL | .75% or .05mm | rem | 3% or 2mm | | ND | 28 24 | 1% or 0.10mm | NIL | .375% or .03mm | rem | 1.5% or
.12mm | | HD | 89 39 | NIL | NIL | NIL | 0.5% or
0.01mm | 0.5% or
.01mm | | A231 | tt ar | 3.5% or 0.25mm | <u>-</u> | - | - | - | | A232 | ss 11 | NIL | NIL | .025mm up to
4.88mm
.038 above
4.88mm | | | | J132 | 19 19 | NIL | NIL | (as A232) | | | | 14-22-30 | - | Free from
harmful defects | _ | - | 444 | - | | G3565 | 11 11 | .01mm up to 2mm 0.5% for 2 to 6mm 0.7% or .06mm for wire above 6mm | NIL | | | 1.5% or
0.05mm
max | N.B. The defect and decarburisation levels specified are qualified, "whichever is the smaller". # Commentary: The German standards authority (DIN) does not publish a specification for oil hardened and tempered 1% CrV spring wire. Materials having broadly similar compositions which can be classed as such include the following steel grades: Germany - 50 CrV4, Wk.St. 1.8159 UK - 735A50, En 47 US - SAE/AISI 6150 France - 50 CV4 Japan - SUP10, SWOCV-V Sweden - 22-30 # 6. SILICON-CHROME PRE-HARDENED AND TEMPERED SPRING WIRE # A. COMPOSITION | Wire
Specification | Origin | Steel
Grade | min | C
max | %S:
min | i
max | %
min | ln
max | %S
max | %P
max | %C
min | r
max | |-----------------------|--------|----------------|------|----------|------------|----------|----------|-----------|-----------|-----------|-----------|----------| | BS2803
1980 | UK | 685A55 | 0.5 | 0.6 | 1.2 | 1.6 | 0.5 | 0.8 | 0.025 | 0.03 | 0.5 | 0.8 | | ASTM
A401:77 | US | | 0.51 | 0.59 | 1.2 | 1.6 | 0.6 | 0.8 | 0.04 | 0.035 | 0.6 | 0.8 | | SAE
J157:70 | US | | 0.51 | 0.59 | 1.2 | 1.6 | 0.6 | 0.8 | 0.04 | 0.035 | 0.6 | 0.8 | | JIS
G3566:86 | Japan | SWOSC-V | 0.5 | 0.6 | 1.2 | 1.6 | 0.5 | 0.8 | 0.025 | 0.025 | 0.5 | 0.8 | # Commentary: The chemical composition of the above four specifications are, for all practical purposes, the same, but attention is drawn to the slight differences in the sulphur and phosphorus contents between the specifications. With modern steel making practice, it is unlikely that the maximum levels quoted for the U.S. standards will be achieved. # B. TENSILE STRENGTH | Wire | | Str | ength Rm (N/mm | ²) | | |--
---|---|--|--|---| | Dia
(mm) | BS2803
Range 1 | BS2803
Range 2 | A401 | J157 | G3566 | | 0.5
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0 | 1950-2100
1830-1980
1750-1900
1680-1830
1630-1780
1590-1740
1560-1710
2540-1690
1520-1670
1500-1650
1460-1610 | 2100-2250
1980-2130
1900-2050
1830-1980
1780-1930
1740-1890
1710-1860
1690-1840
1670-1820
1650-1800
1610-1760 | 2050-2230
1970-2140
1880-2050
1820-1990
1770-1940
1740-1910
1710-1880
1690-1850
1660-1830
1640-1810 | 2050-2230
1970-2140
1880-2050
1820-1990
1770-1940
1740-1910
1710-1880
1690-1850
166011830
1640-1810 | 1910-2060
1860-2010
1810-1960
1760-1910
1710-1860
1660-1810
1660-1810 | Note: Specifications A401, J157 and G3566 specify minimum reduction of area values, e.g. A401 and J157 - 2.3mm to 3.4mm, 45% R of A min, > 3.4mm, 40% R of A min. G3566 - 3.5mm and smaller, 45% R of A min, > 3.5mm, 40% R of A min. # Commentary: The UK is the only major country having two tensile ranges for siliconchrome spring wire. The two American specifications have identical tensile strengths and are very similar to those for the Range 2 British material. The tensile strengths for Japanese wires are somewhat lower. # C. FORMABILITY | Specification | Torsion
Test | Bend Test
(180 ⁰) | Wrap Test | |---------------|-----------------|----------------------------------|--| | BS2803 | 1.5 to 10mm | >3mm | 1mm to 3mm on 1d | | A401 | | ·
 | <4mm on 1d | | J157 | | | 4 to 8mm on 2d
<4mm on 1d | | G3566 | <6mm | >6mm* | 4 to 8mm on 2d
<4mm on 1d
>4mm on 2d | # * 90° bend angle #### Commentary: The only test which is common to the four specifications is the wrap test. There is no requirement for a torsion or bend test in the American standards. # D. SURFACE QUALITY | | | | | | Decarbur | isation | | |-----------|---------------------------------|-----------|---|----------|-------------------|-------------------|-------------------| | Specifica | Specification Deep Etch
test | | Max
defect
depth | Complete | Partial | Gradient | Total | | BS2803 | HS | all sizes | 2% or 0.15mm | Nil | .75% or
.05mm | rem | 3% or
.2mm | | | ND | 11 19 | 1% or 0.1mm | \Nil | .375% or
.03mm | rem | 1.5% or
.12mm | | | HD | n n | Nil | Nil | Nil | 0.5% or
0.01mm | 0.5% or
.01mm | | A401 | | n " | 3.5% or
.25mm | | | | | | J157 | | | 3.5% or
.25mm | 0.5% max | 1.5% max | | 2% max | | G3566 | | all sizes | .01% upto
2mm, .5% for
2 - 6mm, .7%
for over 6mm | Nil | | | 1.5% or
0.05mm | NB The defect and decarburisation levels specified are qualified "whichever is the smaller". # Commentary: It should be noted that the British standard specifies three quality grades, whereas the foreign stardards define only one. The allowable maximum defect and decarburisation levels in American specifications are more generous than those for wire produced to Japanese or British standards. Materials having broadly similar compositions which can be classed as siliconchrome spring steels include the following:- UK - 685A55, En 48A US - SAE/AISI 9254 Germany - 67SiCr5, Wk.St. 1.7103 France - 60SC7 Japan - SWOSC-V, SUP12 The German (DIN) and the Swedish (SIS) standards authorities do not publish specifications for oil hardened and tempered silicon-chrome spring wire. #### 7. STAINLESS STEEL SPRING WIRE Stainless steel spring materials develop their high strength by cold working. Although essentially austenitic, these materials can become weakly magnetic due to the transformation of austenitic to a martensite-type structure as a result of the cold drawing process. This transformation is dependent on the actual composition of the material and, where applications demand "non-magnetic" stainless steel springs, care is required in selecting a suitable material composition which will remain austenitic on cold drawing. This section is devoted to straight 18-8 type stainless steels. #### A. COMPOSITION | Wire
Specification | Origin | Steel
Grade | %C
Max | %Si
Max | %Mn
Max | %S
Max | %P
Max | %Cr | %Ni | %N
Max | |-----------------------|---------|-----------------|--------------|------------|------------|-----------|----------------|----------------|----------------------|-----------| | BS2056
1983 | UK | 302s26 | 0.12 | 1.0 | 2.0 | 0.03 | 0.045 | 17-19 | 7.5-10.0 | | | S205 | UK | _ | 0.15 | 0.2-1.0 | 0.5-2.0 | 0.025 | 0.035 | 17-19 | 7.5-9.0 | | | 1969
ASTM,A313 | ບຣ | 302 | 0.15 | 1.0 | 2.0 | 0.03 | 0.045 | 17-19 | 8-10.0 | 0.1 | | 1981 | | 304
305 | 0.08 | 1.0 | 2.0 | 0.03 | 0.045
0.045 | 18-20
17-19 | 8-10.5
10.5-13.0 | 0.1 | | SAE,J230
1971 | US | 30302 | 0.15 | 1.0 | 2.0 | 0.03 | 0.045 | 17-19 | 8.0-10.0 | | | DIN 17224
1982 | Germany | 1.4310 | 0.12 | 1.5 | 2.0 | 0.03 | 0.045 | 16-18 | 6.0-9.0 | | | SIS 14-23-31
1972 | Sweden | 2331-06 | 0.12 | 1.0 | 2.0 | 0.03 | 0.045 | 17-19 | 7.0-9.5 | | | J.I.S G4314
1984 | Japan | sus302
" 304 | 0.15
0.08 | 1.0 | 2.0 | 0.03 | 0.045 | 17-19
18-20 | 8.0-10.0
8.0-10.5 | | | | | " 304NI | 0.08 | 1.0 | 2.5 | 0.03 | 0.045 | 18-20 | 7.0-10.5 | 0.1-0.2 | # Commentary: In general, European standards contain only one grade of straight 18-8 type stainless steel whereas the American and Japanese include three. Unlike the European standards, the US and Japan offer nitrogen-stabilised material. Compared with other compositions under review, the German wires tend to be somewhat lower in Cr and Ni which will promote more rapid work hardening on cold drawing, along with a greater likelihood of the wire becoming 'magnetic'. # B. TENSILE STRENGTH | | Strength Rm (N/mm²) | | | | | | | | | | |---|--|---|---|---|---|--|---|--|---|--| | Wire
Dia
(mm) | BS 2056 : | 302s26
G2 | s205 | A3
302 & 304 | 305 | J230
30302 | DIN 17224
1.4310 | SIS 14-23-31
23 31-06 | JI:
Class A (WPA)
SUS 302,
304,304NI | S G4314
Class B (WPB)
SUS 302,
304,304NI | | 0.10
0.25
0.50
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0 | 1880-2160
1880-2060
1720-1960
1620-1860
1430-1670
1230-1470 | 2160-2400
2060-2300
1960-2200
1860-2100
1670-1910
1470-1710
1370-1610
1370-1610
1280-1520
1280-1520
1230-1470 | 2150 min
2050 min
1850-2050
1650-1850
1550-1750
1400-1600
1300-1500
1200-1400
1100-1300
1000-1200
1000-1200 | 2240-2450
2205-2415
2070-2275
1895-2095
1695-1895
1530-1745
1415-1620
1295-1515
1205-1415
1160-1365
1070-1280
1035-1240
1000-1205
930-1150 | 1690-1895
1690-1895
1620-1825
1620-1825
1450-1655
1345-1550
1240-1450
1105-1310
1035-1240
965-1170
930-1140
895-1105 | 2240-2450
2205-2415
2070-2275
1850-2070
1695-1895
1530-1745
1415-1620
1280-1475
1205-1415
1110-1325
965-1170 | 2200-2450
2100-2350
2000-2250
1900-2150
1700-1950
1500-1750
1400-1650
1400-1650
1300-1550
1300-1550
1250-1500 | 2110 min
2010 min
1960 min
1760 min
1670 min
1570 min
1470 min
1470 min
1270 min
1270 min | 1618-1863
1569-1814
1569-1814
1471-1716
1324-1569
1177-1422
1177-1422
1079-1324
1079-1324
981-1226
981-1226 | 2157-2403
2059-2305
1961-2206
1863-2108
1667-1912
1471-1716
1471-1716
1373-1618
1373-1618
1275-1520
1275-1520
1128-1373
981-1226
883-1128 | Note: - DIN 17224 stipulates a minimum of 40% R of A for wires over 1.5mm. # Commentary: The national standard having the highest tensile strength over the complete size range is the German DIN 17224, which could be attributed to the
leaner alloy content. The tensile strengths of the British Grade 2, the Swedish and the Japanese Class B wires are very similar. Both Japan (Class A wire) and the USA (305 wire) recognise the need for spring wires of lower tensile strength where increased formability would aid spring manufacture. # C. FORMABILITY | Specification | Torsion
Test | Bend
Test (180 ⁰) | Wrap
Test | Reverse
Bend Test | Wrap and Stretch
Test | |-------------------------|--|----------------------------------|--------------------------|----------------------|---------------------------------------| | BS2056:302S26 | —————————————————————————————————————— | >3mm on 2d
>6mm on 3d | <3mm on 1d | es and and a second | | | s205 | <2mm | | <3mm | >3mm | · | | A313:302,304
and 305 | , | , | <4mm on 1d
>4mm on 2d | >0.6mm | <4.5mm | | J230 | | <u></u> | <4mm on 1d > 4mm on 2d | | <2.5mm | | DIN 17224 | >1.5mm | <u></u> | | | <1.5mm | | SIS 14-23-31 | | | <4mm | | | | G4314 | <4.Omm | | | | · · · · · · · · · · · · · · · · · · · | # Commentary: The torsion test is used only to reveal surface defects and not as a measure of formability. The most common test for formability is the wrap test and is used in all standards except the Japanese specification. The United Kingdom is the only country specifying a bend test for stainless steel wires not surprising considering the practical difficulties in undertaking such a test on a routine basis. # D. SURFACE QUALITY | Specification | Deep Etch
Test | Max. Defect
Depth (mm) | |---|-------------------|--| | BS2056:302S26
S205
A313
J230
DIN 17224
SIS 14-23-31
G4314 | all sizes | (note 1)
(note 2)
———————————————————————————————————— | Note 1:- No quantitative data is given, only general statements to the effect that the material should be free from harmful defects. Note 2:- Visual examination after torsion testing but again no quantitative defect levels quoted. # Commentary: The loss of carbon at the surface of stainless steel wires has no significant effect on the properties and therefore no decarburisation requirement is specified. On the other hand, stainless wires are probably more prone to surface defects than conventional carbon and low alloy spring steel wires, yet none of the standards has attempted to quantify an acceptable surface defect level. Stainless steel wires having broadly similar compositions include the following: UK - 302S26, 302S25, En 58A, S205 US - S302, S304, S305, 30302 Germany - Wk.St. 1.4300, 1.4310, X12CrNi 177, X12CrNi188 Sweden - 14-23-31, 14-23-33 Japan - SUS 301, 302, 304 France - Z6CN18.09, Z10CN18.09 #### 8. MOLYBDENUM-BEARING STATNLESS STEEL SPRING WIRE Stainless steels containing molybdenum are similar in many respects to the 'austenitic' 18/8 type stainless steels, although the additional molybdenum somewhat improves their corrosion resistance. The addition of 2 to 3% molybdenum to the straight 18/8 variety of stainless enhances corrosion resistance under most conditions but especially where exposure to sulphuric acid, organic acids, halogen salts and sea water is encountered. #### A. COMPOSITION | Wire
Specification | Origin | Steel
Grade | %C
Max | %Si
Max | %Mn
Max | %S
Max | %P
Max | %Cr | %Ni | % M O | |-----------------------|---------|----------------|-----------|------------|------------|-----------|-----------|---------------|---------------|--------------| | BS2056
1983 | UK | 316542 | 0.07 | 1.0 | 2.0 | 0.03 | 0.045 | 16.0-
18.5 | 9.5-
13.5 | 2.0-
2.5 | | ASTM, A313
1981 | ບຣ | 316 | 0.08 | 1.0 | 2.0 | 0.03 | 0.045 | 16.0-
18.0 | 10.0-
14.0 | 2.0-
3.0 | | DIN 17224
1982 | Germany | 1.4401 | 0.07 | 1.0 | 2.0 | 0.03 | 0.045 | 16.5-
18.5 | 10.5-
13.5 | 2.0-
2.5 | | SIS 14 23 47
1985 | Sweden | 47-04 | 0.07 | 1.0 | 2.0 | 0.03 | 0.045 | 16.0-
18.5 | 10.5-
14.0 | 2.0-
2.5 | | JIS G4314
1984 | Japan | sus 316 | 0.08 | 1.0 | 2.0 | 0.03 | 0.045 | 16.0-
18.0 | 10.0
14.0 | 2.0-
3.0 | Note:- The German steel grade 1.4401 is also designated as X5 Cr Ni Mo 1810. ### Commentary: All steel compositions are very similar, with the British standard having the leanest alloy content. The United States and Japanese steel compositions are identical, allowing higher percentages of molybdenum than their European counterparts. # B. TENSILE STRENGTH | | Strength R _m (N/mm ²) | | | | | | | |---|--|---|---|--|---|--|--| | Wire
Dia (mm) | BS2056
316S42 | A313
316 | DIN 17224
1.4401 | SIS 14 23 47
23 47-04 | G 4314
SUS316 | | | | 0.10
0.25
0.50
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0 | 1680-1920
1640-1880
1600-1840
1580-1820
1460-1700
1260-1500
1100-1340
1100-1340
1030-1270
1030-1270
860-1100
860-1100 | 1690-1895
1690-1895
1620-1825
1620-1825
1450-1655
1345-1550
1240-1450
1105-1310
1035-1240
965-1170
930-1140
895-1105
895-1105 | 1650-1900
1600-1850
1600-1850
1500-1750
1350-1600
1200-1400
1100-1350
1100-1350
1050-1300 | 1700 min
1650 min
1600 min
1500 min
1400 min
1350 min
1200 min
1200 min
1100 min
1100 min | 1618-1863
1569-1814
1569-1814
1471-1716
1324-1569
1177-1422
1177-1422
1079-1324
1079-1324
981-1226
981-1226 | | | <u>Note</u>:- DIN 17224 specifies a minimum of 40% reduction of area on tensile testing for wires over 1.5mm diameter. # Commentary: There does not appear to be any consistent pattern within the strength values quoted to suggest one national specification is significantly higher than another. From a practical stand-point the differences between the various standards are insignificant. #### C. FORMABILITY | Specification | Torsion
Test | Bend Test
(180°) | Wrap
Test | Reverse
Bend Test | Wrap and
Stretch Test | |------------------|-----------------|--------------------------|--|----------------------|--------------------------| | BS2056:316S42 | | >3mm on 2d
>6mm on 3d | <3mm on 1d | | | | A313:316 | | | <pre><4mm on 1d >4mm on 2d</pre> | >0.6mm | <4.5mm | | DIN 17224:1.4401 | >1.5mm | | | | <1.5mm | | SIS 14 23 47-04 | | | <4mm | | | | G4314:SUS316 | <4mm | | | - | | ### Commentary: The formability requirements given for molybdenum-bearing stainless steels are precisely the same as those given for straight 18/8 type stainless steel wires. The wrap test is the most popular method of assessing formability of wire. Where a torsion test is specified, it is not used to gauge formability but rather to reveal surface imperfections in the material. # D. SURFACE QUALITY | Specification | Deep Etch Test | Max Defect
Depth (mm) | |------------------|----------------|--------------------------| | BS2056:316S42 | | (note 1) | | A313:316 | | | | DIN 17224:1.4401 | | (note 2) | | SIS 14 23 47-04 | | (note 1) | | G4314:SUS316 | | (note 2) | Note 1: Only general statements are given in the standards to the effect that wires should be free from harmful defects. Note 2: Visual examination is required after torsion testing but no quantitative defect levels are given. ### Commentary: In view of the fact that stainless steel wires are more prone to surface imperfections than carbon steels, it is surprising that none of the standards includes a deep etch test to reveal defects, nor specifies acceptable levels of defects. In addition to the steels considered in this comparison, there are a number of other materials having broadly similar compositions: UK - 315S16 (En 58H), 316S16 (En 58J) US - Wk.St. 1.4404 (X2CrNiMo1810), 1.4410 (G-X10CrNiMo18), 1.4408 (G-X6CrNiMo1810) Sweden - 14 23 48, 14 23 43, 14 23 53 Japan - SUS 32TB, SUS 316L France - AFNOR Z6CND17.11, Z2CND17.12 # 9. 17/7 PH STAINLESS STEEL SPRING WIRE Precipitation hardening 17/7PH stainless steel wire is strengthened by a combination of cold working and thermal treatment after spring coiling. The material possesses good corrosion resistance and is particularly useful where high working stresses are encountered. # A. COMPOSITION | Wire
Specification | Origin | Steel
Grade | %C
max | %Si
max | %Mn
max | %S
max | %P
max | %Cr | ₹Ni | %Al | |-----------------------|---------|----------------|-----------|------------|------------|-----------|-----------|-------|----------|-----------| | BS2056
1983 | UK | 301891 | 0.09 | 1.0 | 1.0 | 0.03 | 0.045 | 16-18 | 6.5-7.75 | 0.75-1.50 | | DTD 5086
1969 | UK | | 0.09 | 1.0 | 1.0 | 0.025 | 0.035 | 16-18 | 6.5-7.75 | 0.75-1.50 | | ASTM
A313:81 | ບຣ | 631 | 0.09 | 1.0 | 1.0 | 0.03 | 0.04 | 16-18 | 6.5-7.75 | 0.75-1.50 | | SAE
J217: 70 | us | | 0.09 | 1.0 | 1.0 | 0.03 | 0.04 | 16-18 | 6.5-7.75 | 0.75-1.50 | | AMS
5678A:81 | us | | 0.09 | 1.0 | 1.0 | 0.03 | 0.04 | 16-18 | 6.5-7.75 | 0.75-1.50 | | DIN
17224:82 | Germany | 1.4568 | 0.09 | 1.0 | 1.0 | 0.03 | 0.045 | 16-18
 6.5-7.75 | 0.75-1.50 | | G.4314
1984 | Japan | sus
631J1 | 0.09 | 1.0 | 1.0 | 0.03 | 0.04 | 16-18 | 7.0-8.5 | 0.75-1.50 | ### Commentary: All compositions are very similar except for the Japanese material in which the nickel content is somewhat higher. ### B. TENSILE STRENGTH | BS2056:
s drawn | 301s81
after HT* | DTD 5
as drawn | 086
after HT* | (N/mm ²)
A313 type
and AMS 5 | 631, J217 | DIN 17224 | G4314, | |----------------------|---|-------------------|---|---|--|--|-----------| | | after HT* | as drawn | after HT* | and AMS 5 | 670x | 1 _ | | | 200 2110 | | | | | O / OB | :1.4568 | SUS 631J1 | | 200 2110 | | | | as drawn | after HT* | as drawn* | as drawn* | | 200 2112 | | | | -nominal | | | | | 200 2110 | | | | | | | 1961-2206 | | 380-2110 | 2230-2530 | | | 2035 | 2310-2515 | 1950-2200 | 1912-2157 | | 320-2050 | 2170-2470 | 1800- | 2150- | 2000 | 2275-2480 | 1850-2100 | 1814-2059 | | 770-2000 | 2120-2420 | 1750-2050 | 2150-2450 | 1895 | 2205-2415 | 1800-2050 | 1765-2010 | | 630-1860 | 1930-2210 | 1650-1950 | 2000-2300 | 1760 | 2015-2220 | 1600-1850 | 1569-1814 | | 500-1730 | 1800-2080 | 1500-1800 | 1850-2150 | 1625 | 1875-2080 | 1400-1650 | 1373-1618 | | 160-1690 | 1760-2040 | 1350-1700 | 1700-2000 | 1560 | 1765-1970 | 1400-1650 | 1373-1618 | | 100-1630 | 1680-1950 | 1350-1700 | 1700-2000 | 1530 | 1740-1945 | 1300-1550 | 1275-1520 | | 380-1610 | 1660-1930 | 1300-1650 | 1650-1900 | 1470 | 1670-1875 | 1300-1550 | 1275-1520 | | 350-1580 | 1600-1870 | 1250-1550 | 1550-1850 | 1470 | 1670-1875 | | | | 330-1560 | 1530-1800 | 1250-1550 | 1550-1850 | 1425 | 1620-1825 | | | | 270-1500 | 1470-1740 | 1250-1550 | 1550-1850 | 1425 | 1620-1825 | | | | 270-1500 | 1470-1740 | 1250-1550 | 1550-1850 | 1425 | 1620-1825 | | | | | | | | 1400 | 1585-1795 | | | | ł | | | | 1400 | 1585-1795 | : | | | 1 | | 7 | | | | | | | 4C
38
35
33 | 00-1630
00-1610
00-1580
00-1560
00-1500 | 00-1630 | 00-1630 1680-1950 1350-1700 00-1610 1660-1930 1300-1650 00-1580 1600-1870 1250-1550 00-1560 1530-1800 1250-1550 00-1500 1470-1740 1250-1550 | 00-1630 1680-1950 1350-1700 1700-2000 00-1610 1660-1930 1300-1650 1650-1900 00-1580 1600-1870 1250-1550 1550-1850 00-1560 1530-1800 1250-1550 1550-1850 00-1500 1470-1740 1250-1550 1550-1850 | 10-1630 1680-1950 1350-1700 1700-2000 1530 10-1610 1660-1930 1300-1650 1650-1900 1470 10-1580 1600-1870 1250-1550 1550-1850 1470 10-1500 1470-1740 1250-1550 1550-1850 1425 10-1500 1470-1740 1250-1550 1550-1850 1425 10-1500 1470-1740 1250-1550 1550-1850 1425 1400 1400 1400 | 1680-1950 1350-1700 1700-2000 1530 1740-1945 160-1610 1660-1930 1300-1650 1650-1900 1470 1670-1875 160-1560 1530-1850 1250-1550 1550-1850 1425 1620-1825 | 1680-1950 | * Details of the precipitation heat treatment are given in each of the standards. The majority specify 480° +/- 10°C for 1 to 2 hours, although the Japanese specify 470° +/- 10°C for 1 hour. For the German & Japanese steels, the as-drawn values are increased by 260-400 and 245 min respectively. ### Commentary: The three standards have identical tensile strengths but the as-drawn tensile strengths show differences from country to country, in excess of 100N/mm² in some cases. The strength values for the German and Japanese wires are generally lower than those quoted in British specifications. Only the DIN standard requires a minimum reduction in area of 40% after tensile testing on wires over 1.5mm diameter. ### C. FORMABILITY | Specification | Torsion
Test | Bend
Test (180 ⁰) | Wrap
Test | Reverse
Bend Test | Wrap and
Stretch Test | |---------------|-----------------|----------------------------------|------------------------------|----------------------|--------------------------| | BS2056:301S81 | | >3mm on 2d
>6mm on 3d | <3mm on ld | | | | DTD5086 | <2mm | | <3mm | >3mm | | | A313:type 631 | | | <4.1mm on ld
>4.1mm on 2d | _ | <4.5mm | | J217 | | | all sizes on ld | | <3mm | | AMS 5678A | | | all sizes on 1d | | <3.1mm | | DIN 17224 | >1.5mm | | | | <1.5mm | | G4314 | <4mm | | | | | ### Commentary: Although the torsion test is specified in three of the standards it is not primarily intended to measure the ductility of the material but rather as a test to reveal surface defects in the wire. Most standards favour a wrap test as an indication of formability. With two of the foreign standards there is no provision for measuring formability on large diameter wires. ## D. SURFACE QUALITY: | Specification | Deep Etch
Test | Max Defect
Depth | |---------------|-------------------|---| | BS2056:301S81 | | (Note 1) | | DTD 5086 | all sizes | 1.5% or 0.025mm
whichever is smaller | | A313:type 631 | all sizes | (Note 1) | | . J217 | | (Note 1) | | AMS 5678A | | (Note 1) | | DIN 17224 | | (Note 2) | | G4314 | | (Note 2) | Note 1:- No quantitative information is given, only general statements such as 'free from harmful defects' are specified. Note 2:- Visual examination after torsion testing but no quantitative values given. ### Commentary: Since the carbon content of stainless steels is very low, there is no requirement for specifying decarburisation levels. It is surprising that only two of the standards stipulate deep etch testing as a means of revealing surface defects. Materials having broadly similar compositions which are classified as 17/7PH steels include the following: UK - 301S81, DTD 5086 US - Type 631, J217, AMS 5678A Germany
- Wk.St. 1.4568, X7CrNiAl177 Japan - SUS 631, SUS 631J1 International - ISO 683/XVI Type 2 ### 10. SPRING BRASS AND COPPER-NICKEL SPRING WIRE Although not as widely used as phosphor-bronze material, spring brasses find application where material costs are a first consideration. They possess excellent electrical conductivity and good all-round corrosion resistance. In certain environmental conditions, such as damp atmospheres containing ammonia, cold drawn brass wires may be sensitive to "season cracking". Copper-nickel (also known as "Nickel Silver" and "German Silver") is more expensive and is principally used in telecommunications and optical industries. It is silvery-white in colour and has good resistance to corrosion. Both spring brass and copper-nickel develop their strength from cold working and cannot be hardened by thermal treatments. #### A. COMPOSITION | Wire
Specification | Origin | Grade | % Cu | % Zn | % Ni | % Mn | |-------------------------|---------|--------------------------------------|--|--------------|-----------------------|--------------| | BS 2873:1969 | U.K. | CZ 107
NS 106 | 64.0/
67.0
60.0/
65.0 | Rem.
Rem. | 17.0/
19.0 | 0.05/
0.5 | | ASTM B134:86
B206:86 | USA | C 27000
C 76400 | 63.0/
68.5
58.5/ | Rem. | 16.5/ | | | DIN 17682:79 | Germany | CuZn36
(2.0335)
CuNi18
Zn20 | 61.5
63.5/
65.0
60.0/
63.0 | Rem. | 19.5
17.0/
19.0 | 0.5 max | | JIS H3270:86 | Japan | (2.0740)
C 7521 | 61.0/
67.0 | Rem. | 16.5/
19.5 | 0.5 max | Note:- The German DIN standard 17682 does not specify compositions but refers to other standards for this information e.g. CuZn36 - DIN 17660 and CuNi18Zn20 - DIN 17663. The numbers given in parenthesis below the German grades are alternative Werkstoff material designations. ### Commentary: The compositions for the brasses are very similar from country to country. On the other hand, the USA seems to favour a slightly lower copper content for their copper-nickel alloy. The Japanese do not include a spring brass in their national specifications. #### B. TENSILE STRENGTH | Specification | Grade | Condition | Wire diameter (mm) | Tensile Strength (N/mm ²) | |---------------|----------------|---|--|---| | | | | over up to | min max | | BS 2873:69 | CZ 107 | 0
1/2 H
H
EH
EH | 0.5 10.0
0.5 10.0
0.5 10.0
2.5
2.5 6.0 | 320 -
460 620
620 740
740 820
700 770 | | | NS 106 | 1/2 H
H | by
agreement | | | ASTM B134:86 | C27000 | H00
H01
H02
H03
H04
H06
H08 | 12.0
9.5
6.3 | 345 450
425 530
545 650
635 740
700 810
790 890
830 — | | ASTM B206:86 | C76400 | H01
H02
H04
H08 | 0.5 0.65
0.65 1.60
1.60 3.0
3.0 6.0 | 510 640
635 760
770 885
900 -
860
830
830 | | DIN 17682:79 | CuZn36 | | 0.3 0.8
0.8 1.5
1.5 3.0
3.0 | 750 930
700 850
650 770
by agreement | | | CuNil8
Zn20 | · | 0.3 0.8
0.8 1.5
1.5 3.0
3.0 | 860 1040
830 980
800 920
by agreement | | JIS H3270:86 | C7521 | 0
1/2 H
H | 0.5
0.5 5.0
0.5 5.0 | 373 520
520 686
667 | Note: The wire condition is also referred to as the temper grade in the Japanese and ASTM standards. It should be noted that the various designations for wire condition/temper grade do not necessarily equate to the same tensile strength from country to country. In the current ASIM standards for copper-based alloys, a new series of temper designations has been introduced and these equate to the old designations as given below:- | New temper grades | Old temper grades | |---|--| | 061
H00
H01
H02
H03
H04
H06
H08
H10 | Annealed Eighth—hard Quarter—hard Half—hard Three—quarter—hard Hard Extra—hard Spring—hard Extra—spring hard | | | | #### C FORMABILITY | Specification | Grade | Wrap test
condition size | | Bend Test
condition size | | Tensile Property condition %El(min | | |---------------|----------------|-----------------------------|------------|-----------------------------|--------|------------------------------------|--------------------------------| | BS 2873:69 | CZ107 | н, ен | <6mm | | | 0 | 35% | | ASTM B206 | C76400 | | | но8 | <6.5mm | н08 | 5-9%
(depending
on size) | | DIN 17682 | CuZn 36 | all | <1.5 | all | all | | | | | CuNil8
Zn20 | all | <1.5
mm | all | all | | | # Commentary: The British and German standards favour a wrap test for assessing formability but this is often limited to smaller wire sizes. There appears to be little consistency between the various national standards regarding formability testing in that the UK has no requirements placed on the coppernickel alloy nor the USA on formability of spring brass. The DIN standard specifies a modified wrap test which involves stretching the helix after wrapping. ### D. SURFACE QUALITY Only DIN 17682 makes reference to the required surface quality of the wires and stipulates that defects and scores should be limited to a maximum of 1% of the wire diameter and not more than 0.006mm. The British and Japanese standards make only general statements that wires shall be free from harmful defects without any further qualification. None of the American ASTM specifications makes any reference to surface quality. ### 11 PHOSPHOR BRONZE SPRING WIRE Copper-based spring wires represent a group of materials which, due to their good electrical conductivity and appreciable resistance to corrosion, find wide application in electrical equipment. Almost invariably these materials develop their mechanical strength from cold working by drawing. They do not, however, develop the strength values attainable with ferrous materials and this feature must be recognised when designing springs from copper based materials. Phosphor-Bronze wires are the most widely used of the copper-based alloys. #### A. COMPOSITION | Wire
Specification | Origin | Grade | % Cu | % Sn | % P | |-----------------------|---------|--|--------------|--------------------|------------------------| | BS 2873:1969 | U.K. | PB 102
PB 103 | Rem.
Rem. | 4.5/6.0
6.0/7.5 | 0.02/0.40
0.02/0.40 | | ASTM B 159:86 | USA | C51000
C52100 | Rem.
Rem. | 4.2/5.8
7.0/9.0 | 0.03/0.35
0.03/0.35 | | DIN 17682:79 | Germany | Cu Sn 6
(2.1020)
Cu Sn 8
(2.1030) | Rem. | 5.5/7.0
7.5/8.5 | 0.01/0.35 | | JIS H3270:86 | Japan | C5102
C5191 | Rem.
Rem. | 4.5/5.5
5.5/7.0 | 0.03/0.35
0.03/0.35 | Note:- The DIN standard 17682 does not specify compositions but refers to another standard for this information - DIN 17662. The numbers in parenthesis immediately below the German grade designations refer to the corresponding Werkstoff material numbers. <u>Commentary</u>: In general the compositions of the various grades of phosphor bronze are very similar. ### B. TENSILE STRENGTH | Specification | Grade | Condition | | oiameter | Tensile Strength R | |---------------|---------------------------|--|---------------------------------|--|--| | | | | over | up to | min max | | BS 2873 | PB 102 | 0
1/2H
H
EH
EH | 0.5
0.5
0.5 | 10.0
10.0
10.0
2.5
6.0 | 340 –
540 700
700 850
850 – | | | PB 103 | 0
1/2H
H
EH
EH | 0.5
0.5
0.5
2.5 | 10.0
10.0
10.0
2.5
6.0 | 800 -
370 -
590 740
740 900
900 -
850 - | | ASTM B159:86 | C51000 | 061
H01
H02
H03
H04
H08 | 0.6
1.6
3.0
6.0
10 | 14.0
14.0
14.0
14.0
0.6
1.6
3.0
6.0
10.0
16.0 | 295 400
415 525
550 670
660 795
745 880
1000
930
890
850
830
720 | | | C52100 | 061
H01
H02
H03
H04 | 10 | 6.0
6.0
6.0
6.0
6.0 | 365 470
510 625
655 795
780 930
860 1035 | | DIN 17682:79 | Cu Sn 6
and
Cu Sn 8 | | 0.1
0.3
0.8
1.5
3.0 | 0.3
0.8
1.5
3.0 | 1050 1230
1000 1180
950 1100
900 1020
by agreement | | JIS H3270:86 | C5102
C5191 | 0
H
0
1/2H
H | 0.5
0.5
0.5
0.5
0.5 | 5.0
-
5.0
5.0 | 304 422
637
314 461
637 785
834 | Note:- The wire condition is also referred to as the temper grade in the Japanese and ASIM standards. It should be noted that the various designations for wire condition/temper grade do not necessarily equate to the same tensile strength from country to country. In the current ASTM standards for copper-based alloys, a new series of temper designations has been introduced and these equate to the old designations as given below:- | New temper grades | Old temper grades | |---------------------------------|--| | 061
H00
H01 | Annealed
Eighth—hard
Quarter—hard | | HO2
HO3
HO4
HO6
HO8 | Half—hard Three—quarter—hard Hard Extra—hard Spring—hard | | H10 | Extra—spring hard | #### C. FORMABILITY | Specn. | Grade | Wrap
condtn | Test
Size | Bend
condtn | Test
size | Tensil
condtn | e Property
elongatn | |------------|------------------|----------------|------------------|----------------|--------------|------------------|---| | BS 2873 | PB 102
PB 103 | Н, ЕН
Н, ЕН | <6mm
<6mm | | | 0 | 40% on 100mm
50% on 100mm | | ASTM B 159 | C51000 | | | н08 | <6.5mm | н08 | 5 to 9% on
50mm depend-
ing on size | | DIN
17682 | CuSn6&8 | all | <1.5mm | all | all | | | | JIS H3270 | C5102
C5191 | н
1/2н, н | <1.5mm
<1.5mm | | | | | ### Commentary: Most standards favour a wrap test as a means of assessing formability but this is often limited to the smaller wire sizes. As with other DIN standards, the Germans specify a modified wrap test which involves stretching the coiled helix after forming. ### D. SURFACE QUALITY Only DIN 17682 makes reference to the required surface quality of the wires and stipulates defects and scores should be limited to a maximum of 1% of the wire diameter and not more than 0.006mm. The British and Japanese standards make only general statements that wires shall be free from harmful defects, without any further qualification. The American ASTM specification makes no reference to surface quality. #### 12 COPPER BERYLLIUM SPRING WIRE Within the group of copper-based alloys, copper beryllium has the highest strength derived from its ability to be hardened by cold working followed by a simple thermal treatment. Its use is recommended where the working stresses encountered in service could not be tolerated by other copper-based alloys. Although much more expensive than the other materials in this group, copper beryllium wire finds wide application in instruments and electrical components. #### A. COMPOSITION | Wire
Specification | Origin | Grade | % Cu | % Be | % Ni+Co | % Co | |-------------------------------|---------|--------------------|------------|------------------------|-------------------------|------| | BS 2873:1969
ASTM: B197:85 | UK | CB 101 | Rem
Rem | 1.70/
1.90
1.80/ | 0.05/
0.40
0.2min | | | DIN 17682:79 | Germany | CuBe2
(2.1247) | Rem | 2.0
1.80/
2.10 | 0.2.11.11 | | | | | CuCoBe
(2.1285) | Rem | 0.4/ | | 2.0/ | | JIS H3270:86 | Japan | C1720 | Rem | 1.80/ | 0.2min | | Note:- The DIN standard 17682 does not specify compositions but refers to another standard for this information, viz:- CuBe2 and CuCoBe - DIN 17666. The numbers in parenthesis immediately below the German grade designations refer to the corresponding Werkstoff material numbers. ### Commentary: In general the compositions of the various grades are very similar but the Germans include a low beryllium variety which contains a significant amount of cobalt. However, this low beryllium alloy is not capable of achieving the same high tensile strength as the standard 2% Be alloy. ## B TENSILE STRENGTH | Specification | Grade | Condition | (| Diameter nm) up to, incl | Tensi
R _m
min | le Stren
(N/mm ²
max | gth
) | |----------------------------|--------|---|---------------------------------|---------------------------------|--|--|---| | BS 2873:69 | CB 101 | W
W(H)
WP
W(H)P | 0.5 | 10.0
3.0
10.0
3.0 | 390
770
1050
1240 | -
-
- | | | ASTM B197:85 DIN 17682:79 | C17200 | TB00
TF00
TD01
TH01
TD02
TH02
TD03
TH03
TD04
TD04
F42
F120 | 0.1 | 2.0
2.0
2.0
2.0
3.0 | 400
1105
620
1205
760
1275
895
1310
965
1345
420
1200 | 540
1310
795
1415
930
1480
1070
1585
1140
1585
550
1300 | after h.t. after h.t. after h.t after h.t after h.t after h.t after h.t as drawn after h.t | | | CuCoBe | F65
F125
F80
F135
F95
F140
F25
F65
F50
F75
F60
F80 | 0.1 | 3.0 | 650
1250
800
1350
950
1400
250
650
500
750
600
800 | 800
1400
950
1450
1150
1550
370
800
650
900
750
1000 | as drawn after h.t as drawn after h.t | | JIS H3270:86 | C1720 | 0
1/4H
3/4H | 0.5
0.5
0.5
0.5
0.5 | 5.0
5.0
5.0
5.0 | 392
1098
618
1206
834
1304 | 539
1324
804
1422
1069
1589 | annealed
after h.t.
drawn
after h.t.
drawn
after h.t. | Note:- The wire condition is also referred to as the temper grade in the Japanese and ASTM standards. It should be noted that the various designations for wire condition/temper grade do not necessarily equate to the same tensile strength from country to country. In the current ASTM standard for copper beryllium alloys, a new series of temper designations has been introduced which equate to the old designations as given over:~ | New temper grades | Old temper grades | |-------------------|----------------------------------| | mnoo. | 1 1 (1) | | TBOO | Annealed (A) | | TDO1 | Quarter-hard (1/4H) | | TDO2 | Half-hard (1/2H) | | TDO3 | Three-quarter-hard (3/4H) | | TDO4 | Hard (H) | | TFOO | Annealed then pptn hardened (AT) | | THO1 | 1/4 hard " " (1/4HT) | | THO2 | 1/2 hard " " (1/2HT) | | THO3 | 3/4 " " " (3/4HT) | | THO4 | Hard " " (HT) | #### C. FORMABILITY | Specification | Grade | Wrap Test
Condition size | | Bend Test
Condition siz | | |---------------|------------------|-----------------------------|------------------|----------------------------|------------| | BS2873 | CB101 | W(H) | <1.5mm | | | | ASTM B 197 | C17200 | all tempers, | all sizes | | | | DIN 17682 | CuBe 2
CuCoBe | all
all | <1.5mm
<1.5mm | all
all | all
all | ### Commentary: The standards favour a wrap test as a means of assessing formability but often only for the smaller wire sizes. As with other DIN standards, the Germans specify a modified wrap test which involves stretching the coiled helix after forming. It should be noted the Japanese standard has no tests specified for assessing formability. ### D. SURFACE QUALITY Only DIN 17682 makes reference to the required surface quality of the wires and stipulates that defects and scores should be limited to a maximum of 1% of the wire diameter and not more than 0.006mm. The British and Japanese standards make only general statements that wires shall be free from harmful defects without any further qualification. The American ASTM specification makes no reference to surface quality.